Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let KP be the filled Julia set of a polynomial P, and Kf the filled Julia set of a renormalization f of P. We show, loosely speaking, that there is a finite-to-one function λ from the set of P-external rays having limit points in Kf onto the set of f-external rays to Kf such that R and λ(R) share the same limit set. In particular, if a point of the Julia set Jf = δKf of a renormalization is accessible from C \ Kf then it is accessible through an external ray of P (the converse is obvious). Another interesting corollary is that a component of KP \ Kf can meet Kf only in a single (pre-)periodic point. We also study a correspondence induced by λ on arguments of rays. These results are generalizations to all polynomials (covering notably the case of connected Julia set Kp ) of some results of Levin and Przytycki (1996), Blokh et al. (2016) and Petersen and Zakeri (2019) where it is assumed that Kp is disconnected and Kf is a periodic component of Kp .
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
133--149
Opis fizyczny
Biblogr. 19 poz.
Twórcy
autor
- Institute of Mathematics, The Hebrew University of Jerusalem Givat Ram, Jerusalem, 91904, Israel
Bibliografia
- [Ahl] L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, 1966.
- [ABC16] A. Blokh, D. Childers, G. Levin, L. Oversteegen and D. Schleicher, An extended Fatou-Shishikura inequality and wandering branch continua for polynomials, Adv. Math. 228 (2016) 1121-1174.
- [CG] L. Carleson and Th. W. Gamelin, Complex Dynamics, Springer, 1993.
- [DH1] A. Douady and J. H. Hubbard, Exploring the Mandelbrot Set. The Orsay Notes, 1983-1984, preprint.
- [DH2] A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343.
- [EL89] A. Eremenko and G. Levin, Periodic points of polynomials, Ukrainian Math. J. 41 (1989), 1258-1262.
- [Gol] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable., Transl. Math. Monogr. 26, Amer. Math. Soc., 1969.
- [Inou] H. Inou, Renormalization and rigidity of polynomials of higher degree, J. Math. Kyoto Univ. 42 (2002), 351-392.
- [LS91] G. Levin and M. L. Sodin, Polynomials with disconnected Julia sets and Green maps, preprint 23/1990-91, Landau Center for Research in Mathematical Analysis, Inst. Math., The Hebrew Univ. of Jerusalem, 1991; https://www.researchgate.net/publication/317411781.
- [Le12] G. Levin, Rays to renormalizations, manuscript, 2012.
- [LP96] G. Levin and F. Przytycki, External rays to periodic points, Israel J. Math. 94 (1996), 29-57.
- [McM] C. McMullen, Complex Dynamics and Renormalization, Ann. of Math. Stud. 135, Princeton Univ. Press, 1994.
- [Mil0] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, Springer, 2000.
- [Mil1] J. Milnor, Local connectivity of Julia sets: expository lectures, arXiv:math/9207220 (1992).
- [PZ19] C. Petersen and S. Zakeri, On the correspondence of external rays under renormalization, arXiv:1903.00800 (2019).
- [PZ20] C. Petersen and S. Zakeri, Periodic points and smooth rays, arXiv:2009.02788 (2020).
- [Pict] http://people.math.harvard.edu/˜ctm/gallery/julia/feig.html.
- [Pom] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer, 1992.
- [P86] F. Przytycki, Riemann map and holomorphic dynamics, Invent. Math. 85 (1986), 439-455.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ec192f6-7124-4906-9666-6b73e0d99627