PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surrogate estimators for complex bi-level energy management

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
17th Conference on Computer Science and Intelligence Systems
Języki publikacji
EN
Abstrakty
EN
We deal here with the routing of vehicles in charge of performing internal logistics tasks inside some protected area. Those vehicles are provided in energy by a local solar hydrogen production facility, with limited storage and time-dependent production capacities. In order to avoid importing energy from outside, one wants to synchronize energy production and consumption in order ot minimize both production and routing costs. Because of the complexity of resulting bi-level model, we deal with it by short-cutting the production scheduling level with the help of surrogate estimators, whose values are estimated through fast dynamic programming algorithms or through machine learning.
Słowa kluczowe
Rocznik
Tom
Strony
85--92
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • LIMOS Lab. CNRS/UCA Clermont-Ferrand, France
  • LIMOS Lab. CNRS/UCA Clermont-Ferrand, France
  • Labex IMOBS3, LIMOS Lab, UCA/CNRS Clermont-Ferrand, France
  • Labex IMOBS3, LIMOS Lab, UCA/CNRS Clermont-Ferrand, France
  • Labex IMOBS3, LIMOS Lab CNRS/UCA, Clermont-Ferrand, France
Bibliografia
  • 1. Y. Adulyasak, J.F. Cordeau, R.Jans :The production routing problem: A review. Computers & Operations Research, 55, p 141-152, (2015). doi:10.1016/J.COR.2014.01.011.
  • 2. A.Albrecht, P. Pudney: Pickup and delivery with a solar-recharged vehicle. Ph.D. thesis Australian Society for O.R (2013).
  • 3. C.Artigues, E.Hébrard, A.Quilliot, H.Toussaint: "Models and algorithms for natural disaster evacuation problems". Proceedings of the 2019 FEDCSIS WCO Conference, p 143-146, (2019). DOI: http://dx.doi.org/10.15439/978-83-952357-8-8.
  • 4. F.Bendali, J.Mailfert, E.Mole-Kamga, A.Quilliot, H.Toussaint : Pipelining dynamic programming procsses in order to synchronize Energy production and consumption, 2020 FEDCSIS WCO Conf., p 303-306, (2020). DOI: http://dx.doi.org/10.15439/978-83-955416-7-4.
  • 5. A.Caprara, M.Carvalho, A.Lodi, G.J.Woeinger: A study on the computational complexity of the bilevel knapsack problem; SIAM Journal on Optimization 24 (2), p 823-838, (2014).
  • 6. L.Chen, G.Zhang: Approximation algorithms for a bi-level Knapsack problem; Theoretical Computer Sciences 497, p 1-12, (2013).
  • 7. T. Erdelic, T. Caric: (2019). A survey on the electric vehicle routing problem: Variants and solution approaches. Journal of Advanced Transportation, (2019). doi:10.1155/2019/5075671.
  • 8. S.Fidanova, O.Roeva, M.Ganzha: " Ant colony optimization algorithm for fuzzy transport modelling". Proceedings of the 2020 FEDCSIS WCO Conference, p 237-240, (2020). DOI: http://dx.doi.org/10.15439/978-83-955416-7-4
  • 9. C.Grimes, O.Varghese, S.Ranjan. Light, water, hydrogen: Solar generation by photoelectrolysis. Springer-Verlag US, (2008).
  • 10. S.Irani, K.Pruhs: Algorithmic problems in power management. SIGACT News, 36, 2, p 63-76, (2003).
  • 11. C.Koc, O.Jabali, J.Mendoza, G.Laporte: The electric vehicle routing problem with shared charging stations. ITOR, 26 , p 1211-1243, (2019). doi:https://doi.org/10.1111/itor.12620.
  • 12. M.Krzyszton: "Adapative supervison: method of reinforcement learning fault elimination by application of supervised learning". Proceedings of the 2018 FEDCSIS AI Conference, p 139-149, (2018). DOI: http://dx.doi.org/10.15439/978-83-949419-5-6
  • 13. G. Macrina, L.D. Pugliese, F. Guerriero: (2020). The green-vehicle routing problem: A survey. In Modeling and Optimization in Green Logistics, Cham: Springer International Publishing. p. 1-26, (2020). doi:10.1007/978-3-030-45308-4_1
  • 14. K.Stoilova, T.Stoilov: "Bi-level optimization application for urban traffic management". 2020 FEDCSIS WCO Conference, p 327-336, (2020). DOI: http://dx.doi.org/10.15439/978-83-949419-5-6
  • 15. J. Wojtuziak, T. Warden, O. Herzog: "Machine learning in agent based stochastic simulation: Evaluation in transportation logistics"; Computer and Mathematics with Applications 64, p 3658-3665, (2012). https://doi.org/10.1016/j.camwa.2012.01.079.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ec019b0-7dbc-4bcd-9a5a-6225e6a556a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.