PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Empirical Scaling Relations for the Photospheric Magnetic Elements of the Flaring and Non-Flaring Active Regions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Here, we analyze magnetic elements of the solar active regions (ARs) observed in the line-of-sight magnetograms (the 6173 Å FeI line) recorded with the Solar Dynamics Observatory (SDO)/Hel\-ioseismic and Magnetic Imager (HMI). The Yet Another Feature Tracking Algorithm (YAFTA}) was employed to analyze the statistical properties of these features (e.g., filling factor, magnetic flux, and lifetime). Magnetic features were extracted from the areas of 180o×180o inside the flaring AR (NOAA 12443) for November 3-5, 2015 and non-flaring AR (NOAA 12446) for November 4-6, 2015. The mean filling factor of polarities was found to be about 0.49 for the flaring AR, while this value was 0.08 for the non-flaring AR. Time series of the filling factors of the negative and positive polarities for the flaring AR showed anti-correlated behavior (with the Pearson value of -0.80). However, there was a strong positive correlation (with the Pearson value of 0.95) for the non-flaring AR. A power-law function was fitted to the frequency distributions of flux (F), size (S), and lifetime ($T$). Power exponents of the distributions of flux, size, and lifetime for the flaring AR were found to be -2.36±0.27, -3.11±0.17, and -1.70±0.29, respectively, while for the non-flaring AR: -2.53±0.20, -3.42±0.21, and -1.61±0.19, respectively. The code detected a magnetic element with the maximum flux of 23.54×1020 Mx. The maximum size of detected patches was found to be about 300 Mm2. The most long-lived patch in the flaring AR belonged to an element with a lifetime of 2208 min. We showed that S, F, and T for patches in the flaring AR follow empirical scaling relations: S∼F0.66±0.01, F∼T0.48±0.04, and S∼T0.32±0.02, respectively. For patches in the non-flaring AR, we obtained S∼F0.64±0.02, F∼T0.37±0.06, and S∼T0.23±0.03, respectively. The comparisons indicated that correlations between parameters of F and T, and also, S and T for the flaring AR, are larger than those of the non-flaring AR. The scaling law relation between the flux growth rate of positive polarities and their size indicates a strong correlation of more than 0.7 in both ARs.
Czasopismo
Rocznik
Strony
163--188
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • Department of Physics, Faculty of Science, University of Zanjan, 45195-313, Zanjan, Iran
  • Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), University of Maragheh, 55136-553, Maragheh, Iran
autor
  • Department of Physics, Payame Noor University (PNU), 19395-3697, Tehran, Iran
autor
  • Department of Physics, Faculty of Science, University of Zanjan, 45195-313, Zanjan, Iran
Bibliografia
  • Aschwanden, M.J., Stern, R.A., and Güdel, M. 2008, ApJ, 672, 659.
  • Aschwanden, M.J. 2011, “Self-Organized Criticality in Astrophysics”, Praxis Publishing, p. 84.
  • Aschwanden, M.J. 2015, ApJ, 814, 19.
  • Attie, R., and Innes, D.E. 2015, A&A, 574, A106.
  • Buehler, D., Lagg, A., van Noort, M., and Solanki, S.K. 2019, A&A, 630, A86.
  • Burtseva, O., and Petrie, G. 2013, Solar Physics, 283, 429.
  • Cantó, J., Curiel, S., and Martínez-Gómez, E. 2009, A&A, 501, 1259.
  • Clauset, A., Shalizi, C.R., and Newman, M.E.J. 2009, SIAM Review, 51, 661.
  • Close, R.M., Parnell, C.E., Longcope, D.W., and Priest, E.R. 2005, Solar Physics, 231, 45.
  • Conlon, P.A., McAteer, R.J., Gallagher, P.T., and Fennell, L. 2010, ApJ, 722, 577.
  • DeForest, C.E., Hagenaar, H.J., Lamb, D.A., Parnell, C.E., and Welsch, B.T. 2007, ApJ, 666, 576.
  • de Wijn, A.G., Rutten, R.J., Haverkamp, E.M.W.P., and Sütterlin, P. 2005, A&A, 441, 1183.
  • de Wijn, A.G., Stenflo, J.O., Solanki, S.K., and Tsuneta, S. 2009, Space Science Reviews, 144, 275.
  • Everitt, B. 2002, in: “Cambridge dictionary of statistics”, Ed. B.S. Everitt. 2nd ed., Cambridge University Press, p. 346.
  • Fogel, L., Owens, A., and Walsh, M. 1966, in: “Artificial intelligence through simulated evolution”, John Wiley and Sons, p. 73.
  • Gosain, S. 2012, ApJ, 749, 85.
  • Gošić,M., Rubio, L.R.B., Suárez, D.O., Katsukawa, Y., and del Toro Iniesta, J.C. 2014, ApJ, 797, 49.
  • Gošić, M., Rubio, L.R.B., del Toro Iniesta, J.C., Orozco Suárez, D., and Katsukawa, Y. 2016, ApJ, 820, 35.
  • Hagenaar, H.J., Schrijver, C.J., Title, A.M., and Shine, R.A. 1999, ApJ, 511, 932.
  • Hagenaar, H.J., Schrijver, C.J., and Title, A.M. 2003, ApJ, 584, 1107.
  • Honarbakhsh, L., Alipour, N., and Safari, H. 2016, Solar Physics, 291, 941.
  • Javaherian, M., Safari, H., Dadashi, N., and Aschwanden, M.J. 2017, Solar Physics, 292, 164.
  • Jiang, C.W., Feng, X.S., Wu, S.T., and Hu, Q. 2017, Research in Astronomy and Astrophysics, 17, 093.
  • Kaithakkal, A.J., Suematsu, Y., Kubo, M., Shiota, D., and Tsuneta, S. 2013, ApJ, 776, 122.
  • Kaithakkal, A.J., Suematsu, Y., Kubo, M., et al. 2015, ApJ, 799, 139.
  • Kestener, P., Conlon, P.A., Khalil, A., et al. 2010, ApJ, 717, 995.
  • Liu, L., Cheng, X., Wang, Y., and Zhou, Z. 2019a, ApJ, 884, 45.
  • Liu, H., Liu, C., Wang, J.T.L., and Wang, H. 2019b, ApJ, 877, 121.
  • Lorrain, P., Lorrain, F., and Houle, S. 2006, in: “Case Study: Solar Magnetic Elements”, Springer New York, p. 189.
  • Louis, R.E. 2019, Journal of Geophysical Research: Space Physics, 124, 8255.
  • Mitchell, M. 1996, in: “An Introduction to Genetic Algorithms”, MIT Press, p. 22.
  • Narang, N., Banerjee, D., Chandrashekhar, K., and Pant, V. 2019, Solar Physics, 294, 40.
  • Newman, M.E.J. 2005, Contemporary Physics, 46, 323.
  • Noori, M., Javaherian, M., Safari, H., and Nadjari, H. 2019, Advances in Space Research, 64, 504.
  • Okunev, O.V., and Kneer, F. 2004, A&A, 425, 321.
  • Otsuji, K., Shibata, K., Kitai, R., et al. 2007, PASJ, 59, S649.
  • Otsuji, K., Kitai, R., Ichimoto, K., and Shibata, K. 2011, PASJ, 63, 1049.
  • Parnell, C.E. 2002, MNRAS, 335, 389.
  • Parnell, C.E., DeForest, C.E., Hagenaar, H.J., et al. 2009, ApJ, 698, 75.
  • Pauluhn, A., and Solanki, S.K. 2007, A&A, 462, 311.
  • Pérez-Suárez, D., Higgins, P.A., Bloomfield, D.S., et al. 2011, “Automated Solar Feature Detection for Space Weather Applications”, IGI Global, p. 207.
  • Priest, E. 2014, “Magnetohydrodynamics of the Sun”, Cambridge University Press, p. 25.
  • Scherrer, P.H., Bogart, R.S., Bush, R.I., et al. 1995, Solar Physics, 162, 129.
  • Schou, J., Scherrer, P.H., Bush, R.I., et al. 2012, Solar Physics, 275, 229.
  • Schrijver, C.J., and Title, A.M. 2003, ApJ, 597, L165.
  • Stenflo, J.O. 1973, Solar Physics, 32, 41.
  • Teh, W.L. 2019, Journal of Atmospheric and Solar-Terrestrial Physics, 188, 44.
  • Wang, S., Liu, C., Liu, R., et al. 2012, ApJ, 745, L17.
  • Welsch, B.T., and Longcope, D.W. 2003, ApJ, 588, 620.
  • Zender, J.J., Kariyappa, R., Giono, G., et al. 2017, A&A, 605, A41.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ebfad55-7b31-45ea-b83b-6900e8e7989b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.