PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined Influence of Silicon Content and Oxygen Concentration on the Oxidation Process of Silicon-Containing Steels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The combined influence of silicon content and oxygen concentration on silicon-containing steels was investigated, via a heating route similar to that applied in the industrial reheating process, using a Simultaneous Thermal Analyzer (STA). Four different oxygen concentrations and three different isothermal holding times were designed. The results show that the effect of silicon on the mass gain depends on the oxygen concentration and the oxidation time. The mass gain of low-silicon steel is greater than that of high-silicon steel at 1260°C in the oxygen concentrations of 1.0 vol.% and 2.0 vol.%, even when the isothermal holding time is 90 minutes. However, there is a critical time point for mass gain in oxygen concentrations ≥3.0 vol.%. The mass gain of lowsilicon steel is greater before and smaller after this critical point. The critical time is deferred with decreasing oxygen concentration.
Twórcy
autor
  • Wuhan University of Science and Technology, The State Key Laboratory of Refractories and Metallurgy, Wuhan, China
  • Wuhan University of Science and Technology, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan, China
autor
  • Wuhan University of Science and Technology, The State Key Laboratory of Refractories and Metallurgy, Wuhan, China
  • Wuhan University of Science and Technology, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan, China
autor
  • Wuhan University of Science and Technology, The State Key Laboratory of Refractories and Metallurgy, Wuhan, China
  • Wuhan University of Science and Technology, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan, China
autor
  • Wuhan University of Science and Technology, The State Key Laboratory of Refractories and Metallurgy, Wuhan, China
  • Wuhan University of Science and Technology, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan, China
autor
  • Wuhan University of Science and Technology, The State Key Laboratory of Refractories and Metallurgy, Wuhan, China
  • Wuhan University of Science and Technology, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan, China
Bibliografia
  • [1] H. Okada, T. Fukagawa, H. Ishihara, A. Okamoto, M. Azuma, Y. Matsuda, ISIJ Int. 80, 849-854 (1994).
  • [2] A. Chattonpadhyay, T. Chanda, Scr. Mater. 58, 882-885 (2008).
  • [3] X. Q. Xu, X. F. Zhang, X. Y. Sun, Z. P. Lu, Corr. Sci. 65, 317-321 (2012).
  • [4] M. Takeda; T. Onishi. Mater. Sci. Forum. 522, 477-488 (2006).
  • [5] B. He, G. Xu, M. X. Zhou, Q. Yuan, Metals. 6, 137-145 (2016).
  • [6] H. Okada, T. Fukagawa, H. Ishihara, ISIJ Int. 35, 886-891 (1995).
  • [7] T. Fukagawa, H. Okada, Y. Maeharara, ISIJ Int. 34, 906-911 (1994).
  • [8] T. Fukagawa, H. Okada, Y. Maehara, H. Fujikawa, ISIJ Int. 82, 63-68 (1996).
  • [9] X. J. Liu, G. M. Cao, Y. Q. He, T. Jia, Z. Y. Liu, J. Iron Steel Res. Int. 20, 73-78 (2013).
  • [10] Q. Yuan, G. Xu, M. X. Zhou, B. He, Metals. 6, 94-103 (2016).
  • [11] Y. L. Yang, C. H. Yang, S. N. Lin, C. H. Chen, W. T. Tsai, Mater. Chem. Phys. 112, 566-571 (2008).
  • [12] L. Suarez, J. Schneider, Y. Houbaert, Defect Diffus. Forum. Trans Tech Publications, 661-666, Switzerland 2008.
  • [13] L. Suarez, J. Schneider, Y. Houbaert, Defect Diffus. Forum. Trans Tech Publications, 655-660, Switzerland 2008.
  • [14] A. A. Mouayd, A. Koltsov, E. Sutter, B. Tribollet, Mater. Chem. Phys. 1 43, 996-1004 (2014).
  • [15] S. J. Li, Y. B. Liu, W. Zhang, Q. S. Sun, L. P. Wang, J. Iron Steel Res. Int. 27, 55-60 (2015). (In Chinese).
  • [16] R. Logani, W. W. Smeltzer, Oxid. Met. 1, 3-21 (1969).
  • [17] A. Rahmel, Corrons. Sci. 39, 354 (1988).
  • [18] G. M. Cao, T. Z. Wu, R. Xu, Z. F. Li, F. X. Wang, Z. Y. Liu, J. Iron Steel Res. Int. 22, 892-896 (2015).
  • [19] R. Y. Chen, W. Y. D. Yuen, Oxid. Met. 59, 433-468 (2003).
  • [20] R. Y. Chen, W. Y. D. Yuen, ISIJ Int. 45, 52-59 (2005).
  • [21] X. J. Liu, G. M. Cao, D. M. Nie, Z. Y. Liu, J. Iron Steel Res. Int. 20, 54-59 (2013).
  • [22] G. Garnaud, R. A. Rapp, Oxid. Met. 11, 193-198 (1977).
  • [23] R. W. Staettle, M. G. Fontana, Advances in Corrosion Science and Technology, Springer-Verlag, 239-356, New York 1974.
  • [24] A. Atkinson, Corros. Sci. 22, 87-102 (1982).
  • [25] T. Adachi, G. H. Meier, Oxid. Met. 27, 347-366 (1987).
  • [26] Q. Yuan, G. Xu, M. X. Zhou, B. He, Int. J. Miner. Metall. Mater. 23, 1-8 (2016).
  • [27] P. Kofstad, J. Less Common Metals. 7, 241-266 ( 1964).
Uwagi
EN
1. The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (NSFC) (No. 51274154).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5eb3afc8-3a17-45c7-95de-51f5e2d9028a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.