PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculation strength optimum of surgical robot effector for mechanical eigenproblems using FEM and genetic algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is essential to check whether the surgical robot end effector is safe to use due to phenomena such as linear buckling and mechanical resonance. The aim of this research is to build an multi criteria optimization model based on such criteria as the first natural frequency, buckling factor and mass, with the assumption of the basic constraint in the form of a safety factor. The calculations are performed for a serial structure of surgical robot end effector with six degrees of freedom ended with a scalpel. The calculation model is obtained using the finite element method. The issue of multi-criteria optimization is solved based on the response surface method, Pareto fronts and the genetic algorithm. The results section illustrates deformations of a surgical robot end effector occurring during the resonance phenomenon and the buckling deformations for subsequent values of the buckling coefficients. The dependencies of the geometrical dimensions on the criteria are illustrated with the continuous functions of the response surface, i.e. metamodels. Pareto fronts are illustrated, based on which the genetic algorithm finds the optimal quantities of the vector function. The conducted analyzes provide a basis for selecting surgical robot end effector drive systems from the point of view of their generated inputs.
Rocznik
Strony
art. no. 2023106
Opis fizyczny
Bibliogr. 27 poz., il. kolor., wykr.
Twórcy
  • Warsaw University of Technology, Institute of Micromechanics and Photonics, Faculty of Mechatronics
Bibliografia
  • 1. L. Sha, A. Lin, X. Zhao; A topology optimization method of robot lightweight design based on the finite element model of assembly and its applications; Science Progress, 2020, 103, 1-16
  • 2. A. Roya, T. Ghosh, R. Mishraa, S.Kelmash; Dynamic, FEA analysis and optimization of a robotic arm for CT image guided procedures; Materials Today: Proceedings, 2018, 5, 19270-19276
  • 3. T. Ghosh, A. Roya, T. Ghosha, R. Mishraa, S. Kelmash; Structural optimization of a CT guided robotic arm based on static analysis; Materials Today: Proceedings, 2018, 5, 19586-19593
  • 4. R. Konietschke, T. Ortmaier, H. Weiss, R. Engelke, G. Hirzinger; Optimal Design of a Medical Robot for Minimally Invasive Surgery; 2. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC), Nürnberg, November 4-7, 2003
  • 5. M. Miroir, Y. Nguyen, J. Szewczyk, S.Mazalaigue, E. Ferrary, O. Sterkers, A. Grayeli; RobOtol: from design to evaluation of a robot for middle ear surgery; The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010
  • 6. Miroir M., Szewczyk J., Nguyen Y., Mazalaigue S., SterkersO.: Design of a robotic system for minimally invasive surgery of the middle ear. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2008
  • 7. C. Drouin, A. Pourghodrat, S. Miossec, G. Poisson, C. Nelson; Dimensional optimization of A TWO-ARM robot for single-site surgery operations; ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2013
  • 8. B. Bounab; Multi-objective optimal design based kineto-elastostatic performance for the delta parallel mechanism; Robotica, 2016, 34, 258-273
  • 9. M. Bourezane; Buckling finite element analysis of beams and frame,” Proceedings of the World Congress on Engineering, 2012, 1
  • 10. A. Jaber, R. Bicker; A Systematic Strategy to Find the Natural Frequencies of an Industrial Robot, Proc. of the Intl. Conf. on Advances in Mechanical and Robotics Engineering, 42-47, 2013
  • 11. A. Doria, S. Cocuzza, N. Comand, M. Bottin, A. Rossi; Analysis of the Compliance Properties of an Industrial Robot with the Mozzi Axis Approach; Robotics. 2019, 80, 1-19
  • 12. M. Crocker; Handbook of noise and vibration control; Wiley, 2007, 528-45
  • 13. W. Fiebig, J. Wróbel; Energy accumulation in mechanical resonance and its use in drive systems of impact machines; Archives of Civil and Mechanical Engineering, 2020, 30
  • 14. O. Zienkiewicz, R. Taylor, J. Zhu; Finite element method; Its basis and fundamentals; Elsevier, 2013.
  • 15. K. Bathe, E. Wilsont; Solution methods for eigenvalue problems in structural mechanics. International Journal for Numerical Methods in Engineering, 1973, 6, 3-226
  • 16. L. Bostic, S. Lanczos; Eigensolution method for high-performance computers; National Aeronautics and Space Administration Memorandum, 1991, 1-20
  • 17. G. Box, K. Wilson; On the Experimental Attainment of Optimum Conditions; Journal of the Royal Statistical Society B, 1951, 13, 1-45
  • 18. R. Howe, Y. Matsuoka; Robotics for surgery; Annual Review of Biomedical Engineering, 1999, 1, 211-240
  • 19. B. Davies: A review of robotics in surgery; Proceedings of the Institution of Mechanical Engineers H, 2000, 214, 129-140
  • 20. R. Taylor, D. Stoianovici; Medical robotics in computer-integrated surgery; IEEE Transactions on Robotics and Automation, 2003, 19, 765-781
  • 21. P. Gomes; Surgical robotics: reviewing the past, analysing the present, imagining the future; Robotics and Computer-Integrated Manufacturing, 2011, 27, 261-266
  • 22. S. Najarian, M. Fallahnezhad, E. Afshari; Advances in medical robotic systems with specific applications in surgery - a review; Journal of Medical Engineering and Technology, 2011, 35, 19-33
  • 23. M. Yang, J. Jung, J. Kim; Current and future of spinal robot surgery; Korean Journal of Spine, 2010, 7 61-65
  • 24. G. Sung, S. Gill; Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems; Urology, 2001, 58 , 893-898
  • 25. M. Lerner, M. Ayalew, W. Peine, C. Sundaram; Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system?; Journal of Endourology, 2010, 24, 67-472
  • 26. M. Kroh, H. El-hayek, S. Rosenblatt; First human surgery with a novel single-port robotic system: cholecystectomy using the da Vinci Single-Site platform; Surgical Endoscopy, 2011, 25, 3566-3573
  • 27. K. Shah, R. Abaza; Comparison of intraoperative outcomes using the new and old generation da Vinci robot for robot-assisted laparoscopic prostatectomy; British Journal of Urology International, 2011, 108, 1642-1645
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5eabaa54-7c6a-428f-bdff-c1a3f9125e7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.