PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Response discontinuities in the solution of the incremental Mori-Tanaka scheme for elasto-plastic composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The incremental Mori–Tanaka model of elasto-plastic composites is discussed, and the corresponding finite-step formulation is shown to lead to discontinuities in the overall response at the instant of elastic-to-plastic transition in the matrix. Specifically, two situations may be encountered: the incremental equations may have two solutions or no solution. In the former situation, switching between the two solutions is associated with a jump in the overall stress. Response discontinuities are studied in detail for a special case of proportional deviatoric loading. The discontinuities constitute an undesirable feature of the incremental Mori–Tanaka scheme that apparently has not been discussed in the literature so far. Remedies to the related problems are briefly discussed.
Rocznik
Strony
3--27
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02–106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02–106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02–106 Warsaw, Poland
Bibliografia
  • 1. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misftting inclusions, Acta Metallurgica, 21, 571–574, 1973.
  • 2. Y. Benveniste, A new approach to the application of Mori-Tanaka’s theory in composite materials, Mechanics of Materials, 6, 147–157, 1987.
  • 3. E. Kröner, Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls, Zeitschrift für Physik, 151, 504–518, 1958.
  • 4. R. Hill, A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids, 13, 213–222, 1965.
  • 5. R.M. Christensen, K.H. Lo, Solutions for effective shear properties in three phase sphere and cylinder models, Journal of the Mechanics and Physics of Solids, 27, 315–330, 1979.
  • 6. E. Herve, A. Zaoui, Modelling the effective behavior of non-linear matrix-inclusion composites, European Journal of Mechanics A/Solids, 9, 505–516, 1990.
  • 7. R. McLaughlin, A study of the differential scheme for composite materials, International Journal of Engineering Science, 15, 237–244, 1977.
  • 8. A. Broohm, P. Zattarin, P. Lipinski, Prediction of mechanical behaviour of inhomogeneous and anisotropic materials using an incremental scheme, Archives of Mechanics, 6, 949–967, 2000.
  • 9. M. Cherkaoui, H. Sabar, M. Berveiller, Micromechanical approach of the coated inclusion problem and applications to composite materials, Journal of Engineering Materials and Technology, 116, 274–278, 1994.
  • 10. M. Hori, S. Nemat-Nasser, Double-inclusion model and overall moduli of multi-phase composites, Mechanics of Materials, 14, 189–206, 1993.
  • 11. F. Feyel, J.L. Chaboche, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Computer Methods in Applied Mechanics and Engineering, 183, 309–330, 2000.
  • 12. V. Kouznetsova, W.A.M. Brekelmans, F.P.T. Baaijens, An approach to micromacro modeling of heterogeneous materials, Computational Mechanics, 27, 37–48, 2001.
  • 13. G.J. Dvorak, Y. Benveniste, On transformation strains and uniform fields in multiphase elastic media, Proceedings of the Royal Society of London A, 437, 291–310, 1992.
  • 14. J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, Proceedings of the Royal Society of London A, 348, 101–127, 1976.
  • 15. G.P. Tandon, G.J. Weng, A theory of particle-reinforced plasticity, Transactions of the ASME Journal of Applied Mechanics, 55, 126–135, 1988.
  • 16. A. Molinari, G.R. Canova, S.Ahzi, A self consistent approach of the large deformation polycrystal viscoplasticity, Acta Metallurgica, 35, 2983–2994, 1987.
  • 17. R.A. Lebensohn, C.N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metallurgica et Materialia, 41, 2611–2624, 1993.
  • 18. R. Masson, A. Zaoui, Self-consistent estimates of the rate-dependent elasto-plastic behavior of polycrystalline materials, Journal of the Mechanics and Physics of Solids, 47, 1543–1568, 1999.
  • 19. R. Masson, M. Bornert, P. Suquet, A. Zaoui, An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, Journal of the Mechanics and Physics of Solids, 48, 1203–1227, 2000.
  • 20. J.L. Chaboche, S. Kruch, J.F. Maire, T. Pottier, Towards a micromechanics based inelastic and damage modeling of composites, International Journal of Plasticity, 17, 411–439, 2001.
  • 21. A. Molinari, Averaging models for heterogeneous viscoplastic and elastic viscoplastic materials, Transactions of the ASME Journal of Engineering Materials and Technology, 124, 62–70, 2002.
  • 22. K. Kowalczyk-Gajewska, H. Petryk, Sequential linearization method for viscous/elastic heterogeneous materials, European Journal of Mechanics A/Solids, 30, 650–664, 2011.
  • 23. I. Doghri, A. Ouaar, Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms, International Journal of Solids and Structures, 40, 1681–1712, 2003.
  • 24. J.L. Chaboche, P. Kanouté, A. Roos, On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites, International Journal of Plasticity, 21, 1409–1434, 2005.
  • 25. I. Doghri, L. Adam, N. Bilger, Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method, International Journal of Plasticity, 26, 219–238, 2010.
  • 26. C. Czarnota, K. Kowalczyk-Gajewska, A. Salahouelhadj, M. Martiny, S. Mercier, Modeling of the cyclic behavior of elastic–viscoplastic composites by the additive tangent Mori–Tanaka approach and validation by finite element calculations, International Journal of Solids and Structures, 56–57, 96–117, 2015.
  • 27. G. Ravichandran, C.T. Liu, Modelling constitutive behavior of particulate composites undergoing damage, International Journal of Solids and Structures, 32, 979–990, 1995.
  • 28. C. Garion, B. Skoczeń, S. Sgobba, Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures, International Journal of Plasticity, 22, 1234–1264, 2006.
  • 29. L. Delannay, P. Jacques, T. Pardoen, Modelling of the plastic flow of trip-aided multiphase steel based on an incremental mean-field approach, International Journal of Solids and Structures, 45, 1825–1843, 2008.
  • 30. J.G. Boyd, D.C. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material, International Journal of Plasticity, 12, 843–873, 1996.
  • 31. A.H.Y. Lue, Y. Tomota, M. Taya, K. Inoue, T. Mori, Micro-mechanic modeling of the stress–strain curves of a TiNiCu shape memory alloy, Materials Science and Engineering A, 285, 326–337, 2000.
  • 32. G.K. Hu, Q.P. Sun, Thermal expansion of composites with shape memory alloy inclusions and elastic matrix, Composites: Part A, 33, 717–724, 2002.
  • 33. H.E. Pettermann, C.O. Huber, M.H. Luxner, S. Nogales, H.J. Böhm, An incremental Mori–Tanaka homogenization scheme for finite strain thermoelastoplasticity of MMCs, Materials, 3, 434–451, 2010.
  • 34. I. Doghri, M.I. El Ghezal, L. Adam, Finite strain mean-field homogenization of composite materials with hyperelastic-plastic constituents, International Journal of Plasticity, 81, 40–62, 2016.
  • 35. H.E. Pettermann, A.F. Plankensteiner, H.J. Böhm, F.G. Rammerstorfer, A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori–Tanaka approach, Computers and Structures, 71, 197–214, 1999.
  • 36. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London A, 241, 376–396, 1957.
  • 37. L. Delannay, I. Doghri, O. Pierard, Prediction of tension–compression cycles in multiphase steel using a modified incremental mean-field model, International Journal of Solids and Structures, 44, 7291–7306, 2007.
  • 38. L. Brassart, Homogenization of elasto-(visco)plastic composites: history-dependent incremental and variational approaches, Ph.D. thesis, Université catholique de Louvaino, Louvain-la-Neuve, Belgium, 2011.
  • 39. P. Sadowski, K. Kowalczyk-Gajewska, S. Stupkiewicz, Consistent treatment and automation of the incremental Mori–Tanaka scheme for elasto-plastic composites, submitted 2017.
  • 40. J.R. Willis, Variational and Related Methods for the Overall Properties of Composites, Vol. 21 of Advances in Applied Mechanics, Academic Press, New York, 1981.
  • 41. O. Pierard, C. González, J. Segurado, J. LLorca, I. Doghri, Micromechanics of elasto-plastic materials reinforced with ellipsoidal inclusions, International Journal of Solids and Structures, 44, 6945–6962, 2007.
  • 42. O. Pierard, I. Doghri, Study of various estimates of the macroscopic tangent operator in the incremental homogenization of elastoplastic composites, International Journal for Multiscale Computational Engineering, 4, 521–543, 2006.
  • 43. C. González, J. LLorca, A self-consistent approach to the elasto-plastic behaviour of two-phase materials including damage, Journal of the Mechanics and Physics of Solids, 48, 675–692, 2000.
  • 44. M. Bornert, Homogeneisation des milieux aleatoires; bones et estimations, [in:] M. Bornert, T. Bretheau and P. Gilormini [Eds.], Homogeneisation en Mecanique des Materiaux, Hermes Science Publication, 2001.
  • 45. I. Doghri, C. Friebel, Effective elasto-plastic properties of inclusion-reinforced composites. Study of shape, orientation and cyclic response, Mechanics of Materials, 37, 45–68, 2005.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ea8f303-ab0a-4a61-ae50-c86ce5ba4826
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.