Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study was conducted to highlight the elemental composition of ten soil samples collected at different depths along of a soil profile (0.25-17 m). The collected samples were subjected to epithermal neutron activation analysis at the pulsed reactor IBR-2 of Frank Laboratory of Neutron Physics - Joint Institute for Nuclear Research - Dubna - Russian Federation. The concentrations in mg/kg of 36 major and trace elements were determined. Symbatic behaviour of geochemically related elements was observed: Th and U; Cl and Br and Fe, Ti, Ca, Al, and Mg, etc. A sharp increase of certain concentrations at the depth of 8 m was observed. Significant mafic sources of elements were observed and mostly are attributed to Ethiopian High Plateau with small amount of felsic volcanic rocks.
Czasopismo
Rocznik
Tom
Strony
281--294
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- Egyptian Atomic Energy Authority (EAEA), Nuclear Research Centre, Radiation Protection & Civil Defense Department, 13759 Abu Zaabal, Egypt
- Sector of Neutron Activation Analysis and Applied Research, Division of Nuclear Physics, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot Curie, 6, 141980, Dubna, Moscow Region, Russian Federation, phone +74962165609, fax +74962165085
autor
- Sector of Neutron Activation Analysis and Applied Research, Division of Nuclear Physics, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot Curie, 6, 141980, Dubna, Moscow Region, Russian Federation, phone +74962165609, fax +74962165085
autor
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St. 12622 Dokki, Giza, Egypt
Bibliografia
- [1] Stanley JD. Nile delta: extreme case of sediment entrapment on a delta plain and consequent coastal land loss. Mar Geol. 1996;129(3):189-95. DOI: 10.1016/0025-3227(96)83344-5.
- [2] Arafa WM, Badawy WM, Fahmi NM, Ali K, Gad MS, Duliu OG, et al. Geochemistry of sediments and surface soils from the Nile Delta and lower Nile valley studied by epithermal neutron activation analysis. J Afr Earth Sci. 2015;107:57-64. DOI: 10.1016/j.jafrearsci.2015.04.004.
- [3] Stanley J-D. Egypt’s Nile Delta in late 4000 years BP: Altered flood levels and sedimentation, with archaeological implications. J Coast Res. 2019;35(5):1036-50. DOI: 10.2112/JCOASTRES-D-19-00027.1.
- [4] Negm A. The Nile Delta. 1 ed. The Handbook of Environmental Chemistry 55. Cham: Springer International Publishing; 2017. ISBN: 9783319561240. DOI: 10.1007/978-3-319-56124-0.
- [5] Abd El-Ghani M, Huerta-Martínez FM, Hongyan L, Qureshi R. Human Impacts. In: Abd El-Ghani M, Huerta-Martínez FM, Hongyan L, Qureshi R, editors. Plant Responses to Hyperarid Desert Environments. Cham: Springer International Publishing; 2017. ISBN: 9783319591353. DOI: 10.1007/978-3-319-59135-3_7.
- [6] Fishar MR. Nile Delta (Egypt). In: Finlayson CM, et al., editor. The Wetland Book: II: Distribution, Description, and Conservation. Dordrecht: Springer; 2018. ISBN: 9789400740013. DOI: 10.1007/978-94-007-4001-3_216
- [7] Keshta AE, Shaltout KH, Baldwin AH, Sharaf El-Din AA. Sediment clays are trapping heavy metals in urban lakes: An indicator for severe industrial and agricultural influence on coastal wetlands at the Mediterranean coast of Egypt. Mar Pollut Bull. 2020;151:1-6. DOI: 10.1016/j.marpolbul.2019.110816.
- [8] Hamza W. The Nile Estuary. In: Wangersky PJ, editor. Estuaries. Berlin, Heidelberg: Springer; 2006. ISBN: 978-3-540-00270-3. DOI: 10.1007/698_5_025.
- [9] Brown K, Lemon J. Fact Sheets Cations and Cation Exchange Capacity. 2016. http://soilquality.org.au/factsheets/cations-and-cec-tas.
- [10] Badawy W, Chepurchenko OY, El Samman H, Frontasyeva MV. Assessment of industrial contamination of agricultural soil adjacent to Sadat City, Egypt. Ecol Chem Eng S. 2016;23(2):297-310. DOI: 10.1515/eces-2016-0021.
- [11] Badawy WM, Ali K, El-Samman HM, Frontasyeva MV, Gundorina SF, Duliu OG. Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt. Phys Part Nucl Lett. 2015;12(4):637-44. DOI: 10.1134/s154747711504007x.
- [12] Badawy WM, Ghanim EH, Duliu OG, El Samman H, Frontasyeva MV. Major and trace element distribution in soil and sediments from the Egyptian central Nile Valley. J Afr Earth Sci. 2017;131:53-61. DOI: 10.1016/j.jafrearsci.2017.03.029.
- [13] Kralj D, Romic D, Romic M, Cukrov N, Mlakar M, et al. Geochemistry of stream sediments within the reclaimed coastal floodplain as indicator of anthropogenic impact (River Neretva, Croatia). J Soils Sed. 2016;16(4):1150-67. DOI: 10.1007/s11368-015-1194-3.
- [14] El-Gamal AA. Egyptian Nile Delta Coastal Lagoons: Alteration and Subsequent Restoration. In: Finkl CW, Makowski C, editor. Coastal Wetlands: Alteration and Remediation. Cham: Springer International Publishing; 2017. ISBN: 9783319561790. DOI: 10.1007/978-3-319-56179-0_13.
- [15] El-Sheekh M. River Nile Pollutants and Their Effect on Life Forms and Water Quality. In HJ Dumont, editor. The Nile: Origin, Environments, Limnology and Human Use. Dordrecht: Springer; 2009. ISBN: 9781402097263. DOI: 10.1007/978-1-4020-9726-3_19.
- [16] Frontasyeva MV. Neutron activation analysis in the life sciences. Phys Part Nucl. 2011;42(2):332-78. DOI: 10.1134/S1063779611020043.
- [17] Pavlov SS, Dmitriev AY, Frontasyeva MV. Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia. J Radioanal Nucl Chem. 2016;309(1):27-38. DOI: 10.1007/s10967-016-4864-8.
- [18] Pavlov SS, Dmitriev AY, Chepurchenko IA, Frontasyeva MV. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research. Phys Part Nucl Lett. 2014;11(6):737-42. DOI: 10.1134/S1547477114060107.
- [19] R Core Team. R: A language and environment for statistical computing. 2016. Vienna, Austria. R Foundation for Statistical Computing. URL: http://www.R-project.org/.
- [20] Rudnick RL, Gao S. 4.1 - Composition of the Continental Crust A2 - Holland, Heinrich D. In: Turekian KK, editor. Treatise on Geochemistry. Second Ed. Oxford: Elsevier; 2014. ISBN: 9780080983004. DOI: 10.1016/B978-0-08-095975-7.00301-6
- [21] Viers J, Dupre B, Gaillardet G. Chemical composition of suspended sediments in world rivers: New insights from a new database. Sci Total Environ. 2009;407(2):853-68. DOI: 10.1016/j.scitotenv.2008.09.053.
- [22] Badawy WM, Duliu OG, Frontasyeva MV, El-Samman H, Mamikhin SV. Dataset of elemental compositions and pollution indices of soil and sediments: Nile River and delta - Egypt. Data in Brief. 2020;28. DOI: 10.1016/j.dib.2019.105009.
- [23] Taylor SR, McLennan SM, The continental crust, its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. Oxford: Blackwell Scientific. 312. 1985. ISBN: 9780632011483.
- [24] Condie KC. Chemical-composition and evolution of the upper continental-crust - contrasting results from surface samples and shales. Chem Geol. 1993;104(1-4):1-37. DOI: 10.1016/0009-2541(93)90140-E.
- [25] Wedepohl KH. The composition of the continental crust. Geochim Cosmochim Acta. 1995;59(7):1217-32. DOI: 10.1016/0016-7037(95)00038-2.
- [26] Uosif MAM, Mostafa AMA, Elsaman R, Moustafa E-S. Natural radioactivity levels and radiological hazards indices of chemical fertilizers commonly used in Upper Egypt. J Radiation Res Appl Sci. 2014;7(4):430-7. DOI: 10.1016/j.jrras.2014.07.006.
- [27] Ahmed NK, El-Arabi A-GM. Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. J Environ Radioact. 2005;84(1):51-64. DOI: 10.1016/j.jenvrad.2005.04.007.
- [28] Karadeniz Ö, Yaprak G. Vertical distributions and gamma dose rates of 40K, 232Th, 238U and 137Cs in the selected forest soils in Izmir, Turkey. Radiat Prot Dosim. 2008;131(3):346-55. DOI: 10.1093/rpd/ncn185.
- [29] Alcalá FJ, Custodio E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol. 2008;359(1-2):189-207. DOI: 10.1016/j.jhydrol.2008.06.028.
- [30] Davis SN, Whittemore DO, Fabryka-Martin J. Uses of chloride/bromide ratios in studies of potable water. Ground Water. 1998;36(2):338-50. DOI: 10.1111/j.1745-6584.1998.tb01099.x.
- [31] Saydam Eker Ç, Sipahi F, Gümüş MK, Özkan Ö. Tracing provenance and chemical weathering changes in Ankara Stream sediments, central Turkey: Geochemical and Sr-Nd-Pb-O isotopic evidence. J Afr Earth Sci. 2018;138:367-82. DOI: 10.1016/j.jafrearsci.2017.11.034.
- [32] Savenko SV. Geochemical aspects of biosedimentation. Dokl AN SSSR. 1986;288:1192-6.
- [33] GES. Geology of Ethiopia, Geological Survey of Ethiopia. 2016. http://www.gse.gov.et/.
- [34] Gromet LP, Haskin LA, Korotev RL, Dymek RF. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim Cosmochim Acta. 1984;48(12):2469-82. DOI: 10.1016/0016-7037(84)90298-9.
- [35] Zhang X, Dalrymple RW, Yang S-Y, Lin C-M, Wang P. Provenance of Holocene sediments in the outer part of the Paleo-Qiantang River estuary, China. Mar Geol. 2015;366:1-15. DOI: 10.1016/j.margeo.2015.04.008.
- [36] Gu XX, Liu JM, Zheng MH, Tang JX, Qi L. Provenance and tectonic setting of the proterozoic turbidites in Hunan, South China: Geochemical evidence. J Sedimentary Res. 2002;72(3):393-407. DOI: 10.1306/081601720393.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ea6b892-398f-4d17-8c50-83a115656d8b