Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Programowalne sterowniki PID w technologii CMOS
Języki publikacji
Abstrakty
This paper presents a new programmable proportional (P)-integral (I)-derivative (D) (PID) controller using current conveyor transconductance amplifiers (CCTAs). The proposed PID controller uses the second-generation current conveyor which is the first stage of CCTA to operate as current conveyor analogue switch. The proportional gain, integral time constant and derivative time constant can be controlled electronically using transconductance amplifiers of CCTA. Unlike previous analogue PID controllers, variant P, I, D, PI, PD and PID controllers of this circuit can be programmed by using bias currents without changing any input and output connections. The proposed structure is highly suitable for integrated circuit (IC) implementation by using only grounded passive comments. The proposed programmable PID controller circuits have been simulated using 0.18 µm CMOS process. The simulation results are used to confirm the workability of the proposed circuits. Additionally, the performance evaluation of the proposed programmable PID controller circuit is verified by unit step input for a close-loop system with the second-order low-pass filter in the plant.
W artykule przedstawiono nowy programowalny kontroler proporcjonalny (P) -całkowyy (I) -różniczkowy (D) (PID) wykorzystujący prądowe wzmacniacze transkonduktancyjne (CCTA). Proponowany regulator PID wykorzystuje konwojer prądowy drugiej generacji, który jest pierwszym stopniem CCTA, który działa jako przełącznik analogowy konwojera prądu. Wzmocnienie proporcjonalne, stała czasowa całkowania i stała czasowa różniczkowania mogą być sterowane elektronicznie za pomocą wzmacniaczy transkonduktancyjnych CCTA. W przeciwieństwie do poprzednich analogowych regulatorów PID, warianty regulatorów P, I, D, PI, PD i PID tego obwodu mogą być programowane przy użyciu prądów polaryzacji bez zmiany jakichkolwiek połączeń wejściowych i wyjściowych. Proponowana struktura jest wysoce odpowiednia do implementacji układu scalonego (IC) przy użyciu tylko uziemionych pasywnych komentarzy. Zaproponowane układy programowalnych sterowników PID zostały zasymulowane przy użyciu procesu 0,18 µm CMOS.
Wydawca
Czasopismo
Rocznik
Tom
Strony
35--41
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- Rajamangala University of Technology Srivijaya
autor
- King Mongkut’s Institute of Technology Ladkrabang, Thailand
Bibliografia
- [1] Sedra A., Smith K.C., A second generation current conveyor and its applications, IEEE Transactions on Circuit Theory, 17 (1970), 132-134
- [2] Abuelma’atti M.T., Shabra A.M., A novel current conveyorbased universal current-mode filter, Microelectronics Journal, 27 (1996), 471-475
- [3] Abuelma’atti M.T., Khan M.H., New sinusoidal oscillator employing the CCII internal pole, International Journal of Electronics, 83 (1997), 817-823
- [4] Monpapassorn A., Dejhan K., Cheevasuvit F., CMOS dual output current mode half-wave rectifier, International Journal of Electronics, 88 (2001), 1073-1084
- [5] Minaei S., Electronically tunable current-mode universal biquad filter using dual-X current conveyors, Journal of Circuits, Systems, and Computers, 18 (2009), 665-680
- [6] Yuce E., Minaei S., A first-order fully cascadable current-mode universal filter composed of dual output CCIIs and a grounded capacitor, Journal of Circuits, Systems, and Computers, 25 (2016), 1650042 (15 pages)
- [7] Kubánek D., Khateb F., Tsirimokou G., Psychalinos C., Practical design and evaluation of fractional-order oscillator using differential voltage current conveyors, Circuits Systems and Signal Processing, 35 (2016), 2003-2016
- [8] Premont C., Abouchi N., Grisel R., Chante J.P., A current conveyor-based high-frequency analog switch, IEEE Transactions on Circuits and Systems-I, 45 (1998), 298-300
- [9] Monpapassorn A., An analogue switch using a current conveyor, International Journal of Electronics, 89 (2002), 651- 656
- [10] Monpapassorn A., Chopper modulators using current conveyor analogue switches, Analog Integrated Circuits and Signal Processing, 45 (2005), 155-162
- [11] Monpapassorn A., Programmable wide range voltage adder/subtractor and its application as an encoder, IEE Proceedings–Circuits, Devices and Systems, 152 (2005), 697- 702
- [12] Angkeaw K., Prommee P., Two digitally programmable gain amplifiers based on current conveyors, Analog Integrated Circuits and Signal Processing, 67 (2011), 253-260
- [13] Nonthaputha T., Kumngern M., CMOS programmable fullwave rectifier using current conveyor analogue switches, in Proceedings of International Conference on ICT and Knowledge Engineering, Thailand, (2019), 1-5
- [14] Nonthaputha T., Kumngern M., Lerkvaranyu S., CMOS sample-and-hold circuit using current conveyor analogue switch, in Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems, Thailand, (2016), 1-4.
- [15] Nonthaputha T., Kumngern M., Moungnoul P., CMOS D/A converter using current conveyor analogue switches, in Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems, Thailand, (2016), 1-4
- [16] Prokop R., Musil V., New modern circuit block CCTA and some its applications, in Proceedings of the Fourteenth International Scientific and Applied Science Conference Electronics, Bulgaria, (2005), 93-98
- [17] Comedang T., Intani P., A ±0.2 V, 0.12 μw CCTA using VTMOS and an application fractional-order universal filter, Journal of Circuits, Systems and Computers, 23 (2014), 145012611 (18 pages)
- [18] Jantakun A., Current-mode quadrature oscillator using CCCCTAs with non-interactive current control for CO, FO and amplitude, Informacije MIDEM, 19 (2015), 47-56
- [19] Li Y.A., NAM expansion method for systematic synthesis of floating gyrators using CCCCTAs, Analog Integrated Circuits and Signal Processing, 82 (2015), 733-743
- [20] Chen H.-P., Wang S.-F., Ku Y.-T., CCCCTA-based resistorless voltage and current mode quadrature oscillator, IEICE Electronics Express, 12 (2015), 1-12
- [21] Ranjan R.K., Rani N., Pal R., Paul S.K., Kanyal G., Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application, Microelectronics Journal, 60 (2017), 119-128
- [22] Nonthaputha T., Kumngern M., Programmable universal filters using current conveyor transconductance amplifiers, Journal of Circuits, Systems and Computers, 26 (2017), pp. 1750121 (23 pages)
- [23] Bennette S., Development of the PID Controller, IEEE Control Systems Magazine, 13 (1993), 58-65
- [24] Astrom K.J., Hagglund T., PID controller: Theory, Design, and Tuning, SIA, (1995)
- [25] Johnson M.A., Moradi M.H., PID control: new identification and design methods, Springer, (2005)
- [26] Tietze U., Schenk Ch., Gamm E., Electronic Circuits: Handbook for Design and Application (2nd edition), Springer, (2007)
- [27] Michal V., Premont C., Pillonet G., Abouchi N., Single active element PID controllers, in Proceedings 20th International Conference Radioelektronika, Czech Republic, (2010), 1-4
- [28] Keskin A.U., Design of a PID controller circuit employing CDBAs, International Journal of Electrical Engineering Education, 43 (2006), 48-56
- [29] Erdal A., A new current-feedback-amplifiers (CFAs) based proportional-integral-derivative (PID) controller realization and calculating optimum parameter tolerances, Journal of Applied Sciences, 2 (2002), pp. 56-59
- [30] Edral A., Toker A., Acar C., OTA-C based proportionalintegral- derivative (PID) controller and calculating optimum parameter tolerances, Turkish Journal of Electrical Engineering and Computer Sciences, 9 (2001), 189-198
- [31] Silaruam V., Lorsawatsiri A., Wongtaychatham C., Novel resistorless mixed-mode PID controller with improved lowfrequency performance, Radioengineering, 22 (2013), 932-940
- [32] Erdal A., Kuntman H., Kafali S., A current controlled conveyor based proportional-integral-derivative (PID) controller, Journal of Electrical & Electronics Engineering, 4 (2004), 1243-1248
- [33] Yuce A., Tokat S., Kizilkaya A., Cicekoglu O., CCIIbased PID controllers employing grounded passive components, International Journal of Electronics and Communications, 60 (2006), 399-403
- [34] Yuce A., Minaei S., New CCII-based versatile structure for realizing PID controller and instrumentation amplifier, Microelectronics Journal, 41 (2010), 311-316
- [35] Angkeaw K., Prommee T., Prommee P., Tunable PID controller based on log-domain circuits, in Proceedings 38th International Conference on Telecommunications and Signal Processing, Czech Republic, (2015), 1-4
- [36] Yuce E., Tokat S., Minaei S., Cicekoglu O., Low-componentcount insensitive current-mode and voltage-mode PID, PI and PD controllers, Frequenz, 60 (2006), 29-33
- [37] Srisakultiew S., Siripruchyanun M., A synthesis of electronically controllable current-mode PI, PD and PID controllers employing CCCDBAs, Circuits and Systems, 4 (2013), 287-292
- [38] Kumngern M., Voltage-mode PID controller using DDCCs and all-grounded passive components, in Proceedings of IEEE International Conference on Circuits and Systems, Malaysia, (2013), 13-16
- [39] Kumngern M., Torteanchai U., FDCCII-based P, PI, PD and PID controllers, in Proceedings of Fourth International Conference on Digital Information and Communication Technology and its Applications, Thailand, (2014), 415-418
- [40] Pandey N., Kapur S., Arora P., Sharma S., MO-CCCCTA based PID controller employing grounded passive elements, in Proceedings of 2nd International Conference on Computer and Communication Technology, India, (2011), 270-273
- [41] Lawanwisut S., Srisakultiew S., Siripruchyanun M., A synthesis of low component count for current-mode PID, PI and PD controllers employing single CCTA and Grounded elements, in Proceedings of 38th International Conference on Telecommunications and Signal Processing, Czech Republic, (2015), 1-5
- [42] Mehrol M., Goyal D., Varshney P., DVCCTA based PID controller with grounded passive elements, in Proceedings of 2nd IEEE International Conference on Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity, India, (2016), 41-45
- [43] Calvo B., Celma S., Martinez P.A., Sanz M. T., High-speed high-precision CMOS current conveyor, Analog Integrated Circuits and Signal Processing, 36 (2003), 235-238
- [44] Minaei S., Sayin O.K., Kuntaman H., A new CMOS electronically tunable current conveyor and its application to current-mode filters, IEEE Transactions on Circuits and Systems-I: Regular Papers, 53 (2006), 1448-1457
- [45] Kasemsuwan V., Nakhlo W., A simple 1.5 V rail-to-rail CMOS current conveyor, Journal of Circuits, Systems and Computers, 16 (2007), 627-639
- [46] Palumbo G., 1.2 V CMOS output stage with improved drive capability, Electronics Letters, 35 (1999), 358-359
- [47] Fabre F., Alami M., A precision macomodel for second generation current conveyor, IEEE Transactions on Cicuits and Systems-I: Regular Papers, 44 (1997), 639-642
- [48] Kumngern M., Torteanchai U., CMOS programmable P, PI, PD and PID controller circuit using CCTAs, in Proceedings of 15th international Conference on Electronics, Information, and Communication, Vietnam, (2016), 1-4
- [49] Wang Z., 2-MOSFET transistor with extremely low distortion for output reaching supply voltage, Electronics Letters, 26 (1990), 951-952
- [50] Available at http://www.mosis.com/pages/Technical/Testdata/tsmc- 018-prm.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ea558c8-8d33-404b-8afe-b0ee1ec28b88