PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative accuracy analysis of triangulated surface models of a fossil skull digitized with various optic devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Digital metrology was applied for evaluate 3D models of the unique skull of a fossil tetrapod, Madygenerpeton pustulatum, generated using various 3D digitization methods. The skull surface is covered by minute tubercles making it challenging for digitization with appropriate accuracy. Uniqueness and fragility of the specimen preclude the use of tactile measuring systems for creating a standardized reference model. To overcome this problem, comparative analysis of the triangulated models generated from the clouds of points obtained with seven different devices was conducted using the Geomagic Studio and Autodesk PowerShape CAD software. In the proposed approach, geometrically and dimensionally closest-fitting models underwent detailed statistical analysis between surface polygons in three steps. First, 3D models obtained from different scanning methods were compared with each other in couples. Next, statistical analysis of the differences between the coupled models was performed. Finally, a rating list of the models related to the required accuracy was prepared. The proposed approach is applicable to any other scanned object, especially in palaeontological applications, where each object is unique and exhibits individual features.
Rocznik
Strony
37--51
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • National Technical University, Kharkiv Polytechnic Institute, Department of Integrated Technologies of Mechanical Engineering, Kyrpychova Str. 2, Kharkiv, 61002, Ukraine
autor
  • TU Bergakademie Freiberg, Geological Institute, Bernhard-von-Cotta-Str. 2, 09599 Freiberg, Germany
  • Kazan Federal University, Institute of Geology and Petroleum Technologies, Kremlyovskaya Str. 4/5, 420008 Kazan, Russia
  • Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Stasieckiego 54, 26-600 Radom, Poland
Bibliografia
  • [1] Friess, M. (2012). Scratching the surface? The use of surface scanning in physical and paleoanthropology. Journal of Anthropological Sciences, 90, 1-26. https://doi.org/10.4436/jass.90004
  • [2] Waltenberger, L., Rebay-Salisbury, K., & Mitteroecker, P. (2021). Three-dimensional surface scanning methods in osteology: A topographical and geometric morphometric comparison. American Journal of Physical Anthropology, 174, 846-858. https://doi.org/10.1002/ajpa.24204
  • [3] Emam, S. M., Khatibi, S., & Khalili, K. (2014). Improving the Accuracy of Laser Scanning for 3D Model Reconstruction Using Dithering Technique. Procedia Technology, 12, 353-358. https://doi.org/10.1016/j.protcy.2013.12.498
  • [4] Karczewski, M. (2019). Influence of 3D scanner parameters on accuracy evaluation of vehicle element deformation. AIP Conference Proceedings, 2078, 020012. https://doi.org/10.1063/1.5092015
  • [5] Majchrowski, R., Wieczorowski, M., Grzelka, M., Sadowski, Ł., & Gapiński, B. (2015). Large area concrete surface topography measurements using optical 3D scanner. Metrology and Measurement Systems, 22(4), 565-576. https://doi.org/10.1515/mms-2015-0046
  • [6] Counts, D. B., Averett, E. W., & Garstki, K. (2016). A fragmented past: (re)constructing antiquity through 3D artefact modelling and customised structured light scanning at Athienou-Malloura, Cyprus. Antiquity, 90, 206-218. https://doi.org/10.15184/aqy.2015.181
  • [7] Grosman, L., Smikt, O., & Smilansky, U. (2008). On the application of 3-D scanning technology for the documentation and typology of lithic artefacts. Journal of Archaeological Science, 35, 3101-3110. https://doi.org/10.1016/j.jas.2008.06.011
  • [8] Kuzminsky, S., & Gardiner, M. (2012). Three-dimensional laser scanning: Potential uses for museum conservation and scientific research. Journal of Archaeological Science, 39(8), 2744-2751. https://doi.org/10.1016/j.jas.2012.04.020
  • [9] Bouby, L., Figueiral, I., Bouchette, A., Rovira, N., Ivorra, S., Lacombe, T., Pastor, T., Picq, S., Marinval, P., & Terral, J. F. (2013). Bioarchaeological insights into the process of domestication of grapevine (Vitis vinifera L.) during Roman Times in southern France. PLoS One, 8(5), e63195. https://doi.org/10.1371/journal.pone.0063195
  • [10] Haukaas, C., & Hoddgetts, L. M. (2016). The untapped potential of low-cost photogrammetry in community-based archaeology: A case study from Banks Island, Arctic Canada. Journal of Community Archaeology and Heritage, 3, 40-56. https://doi.org/10.1080/20518196.2015.1123884
  • [11] Porter, S. T., Roussel, M., & Soressi, M. (2016). A simple photogrammetry rig for the reliable creation of 3D artefact models in the field lithic examples from the early upper Paleolithic sequence of Les Cottés (France). Advances in Archaeological Practice, 4, 71-86. https://doi.org/10.7183/2326-3768.4.1.71
  • [12] Re, C., Robson, S., Roncella, R., & Hess, M. (2011). Metric Accuracy Evaluation of Dense Matching Algorithms in Archeological Applications. Geoinformatics FCE CTU, 6, 275-282. https://doi.org/10.14311/gi.6.34
  • [13] Adams, J. W., Olah, A., McCurry, M. R., & Potze, S. (2015). Surface model and tomographic archive of fossil primate and other mammal holotype and paratype specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa. PLoS One, 10(10), 1-14. https://doi.org/10.1371/journal.pone.0139800
  • [14] Das, A. J., Murmann, D. C., Cohrn, K., & Raskar, R. (2017). A method for rapid 3D scanning and replication of large paleontological specimens. PLoS ONE, 12(7), e0179264. https://doi.org/10.1371/journal.pone.0179264
  • [15] Motani, R. (2005). Detailed tooth morphology in a durophagus ichthyosaur captured by 3D laser scanner. Journal of Vertebrate Paleontology, 25, 462-465. https://doi.org/10.1671/0272-4634(2005)025[0462:DTMIAD]2.0.CO;2
  • [16] Niven, L., Steele, T. E., Finke, H., Gernat, T., & Hublin, J. J. (2009). Virtual skeletons: Using a structured light scanner to create a 3D faunal comparative collection. Journal of Archaeological Science, 36, 2018-2023. https://doi.org/10.1016/j.jas.2009.05.021
  • [17] Windhager, S., Mitteroecker, P., Rupić, I., Lauc, T., Polašek, O., & Schaefer, K. (2019). Facial aging trajectories: A common shape pattern in male and female faces is disrupted after menopause. American Journal of Physical Anthropology, 169(4), 678-688. https://doi.org/10.1002/ajpa.23878
  • [18] Evin, A., Souter, T., Hulme-Beaman, A., Ameen, C., Allen, R., Viacava, P., Larson, G., Cucchi, T., & Dobne, K. (2016). The use of close-range photogrammetry in zooarchaeology: Creating accurate 3D models of wolf crania to study dog domestication. Journal of Archaeological Science, 9, 87-93. https://doi.org/10.1016/j.jasrep.2016.06.028
  • [19] Loy, A., Tamburelli, A., Carlini, R., & Slice, D. E. (2011). Craniometric variation of some Mediterranean and Atlantic populations of Stenella coeruleoalba (Mammalia, Delphinidae): A three-dimensional geometric morphometric analysis. Marine Mammal Science, 27(2), E65-E78. https://doi.org/10.1111/j.1748-7692.2010.00431.x
  • [20] Milne, N., Vizcaíno, S. F., & Fernicola, J. C. (2009). A 3D geometric morphometric analysis of digging ability in the extant and fossil cingulate humerus. Journal of Zoology, 278(1), 48-56. https://doi.org/10.1111/j.1469-7998.2008.00548.x
  • [21] Munoz-Munoz, F., Quinto-Sanchez, M., & Gonzales-Jose, R. (2016). Photogrammetry: A useful tool for three dimensional morphometric analysis of small mammals. Journal of Zoological Systematics and Evolutionary Research, 54(4), 318-325. https://doi.org/10.1111/jzs.12137
  • [22] Owen, J., Dobney, K., Evin, A., Cucchi, T., Larson, G., & Vidarsdottir, U. S. (2014). The zooarchaeological application of quantifying cranial shape differences in wild boar and domestic pigs (Sus scrofa) using 3D geometric morphometrics. Journal of Archaeological Science, 43, 159-167. https://doi.org/10.1016/j.jas.2013.12.010
  • [23] Haleem, A., & Javaid, M. (2018). 3D scanning applications in medical field: A literature-based review. Clinical Epidemiology and Global Health, 7(2), 199-210. https://doi.org/10.1016/j.cegh.2018.05.006
  • [24] Elkhuizen, W. S., Callewaert, T. W. J., Leonhardt, E., Vandivere, A., Song, Y., Pont, S. C., Geraedts J. M. P., & Dik, J. (2019). Comparison of three 3D scanning techniques for paintings, as applied to Vermeer’s ‘Girl with a Pearl Earring’. Heritage Science, 7, 89. https://doi.org/10.1186/s40494-019-0331-5
  • [25] Sousa, E, Vieira, L, Costa, D. M. S., Costa D. C., Parafita, R., & Loja, M. A. R. (2017). Comparison between 3D laser scanning and computed tomography on the modelling of head surface. Proceedings of the 3rd International Conference on Numerical and Symbolic Computation - SYMCOMP 2017, Guimarães, Portugal, 119-128.
  • [26] Pawlus, P., Reizer, R., & Wieczorowski, M. (2018). Comparison of results of surface texture measurement obtained with stylus methods and optical methods. Metrology and Measurement Systems, 25(3), 589-602. https://doi.org/10.24425/123894
  • [27] Hawryluk, M., Ziemba, J., & Dworzak, Ł. (2017). Development of a method for tool wear analysis using 3D scanning. Metrology and Measurement Systems, 24(4), 739-757. https://doi.org/10.1515/mms-2017-0054
  • [28] Rudolph, H., Luthardt, R. G., & Walter, M. H. (2007). Computer-aided analysis of the influence of digitizing and surfacing on the accuracy in dental CAD/CAM technology. Computers in Biology and Medicine, 37(5), 579-587. https://doi.org/10.1016/j.compbiomed.2006.05.006
  • [29] Nedelcu, R. G., & Persson, A. S. K. (2014). Scanning accuracy and precision in 4 intraoral scanners: An in vitro comparison based on 3-dimensional analysis. The Journal of Prosthetic Dentistry, 112(6), 1461-1471. https://doi.org/10.1016/j.prosdent.2014.05.027
  • [30] Smith, E. J., Anstey, J. A., Venne, G., & Ellis, R. E. (2013). Using additive manufacturing in accuracy evaluation of reconstructions from computed tomography. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 227(5), 551-559. https://doi.org/10.1177/0954411912474612
  • [31] Zhao, Y., Xiong, Y., & Wang, Y. (2017). Three-Dimensional Accuracy of Facial Scan for Facial Deformities in Clinics: A New Evaluation Method for Facial Scanner Accuracy. PLOS ONE, 12(1), e0169402. https://doi.org/10.1371/journal.pone.0169402
  • [32] Kim, Y. H., Han, S.-S., Choi, Y. J., & Woo, C.-W. (2020). Linear Accuracy of Full-Arch Digital Models Using Four Different Scanning Methods: An In Vitro Study Using a Coordinate Measuring Machine. Applied Sciences, 10(8), 2741. https://doi.org/10.3390/app10082741
  • [33] Aly, P. S., & Mohsen, Ch. A. (2020). Evaluation of the accuracy of digital models obtained from intraoral scanners with different CAD/CAM scanning technologies - An in vitro study. Alexandria Dental Journal, 45(3), 94-98. https://doi.org/10.21608/ADJALEXU.2020.118538
  • [34] Cunningham, J. A., Rahman, I. A., Lautenschlager, S., Rayfield, E. J., & Donoghue, Ph. C. J. (2014). A virtual world of paleontology. Trends in Ecology & Evolution, 29(6), 347-357. https://doi.org/10.1016/j.tree.2014.04.004
  • [35] Díez Díaz, V., Mallison, H., Asbach, P., Schwarz, D. & Blanco, A. (2021). Comparing surface digitization techniques in palaeontology using visual perceptual metrics and distance computations between 3D meshes. Palaeontology, 64(2), 179-202. https://doi.org/10.1111/pala.12518
  • [36] Kogan, I., Rucki, M., Jähne, M., Eger Passos, D., & Cvjetkovic, T. Schmidt, S. (2020). One Head, many Approaches - Comparing 3D Models of a Fossil Skull. In Luhmann, Th., & Schumacher, Ch. (Eds.). Photogrammetrie - Laserscanning - Optische 3D-Messtechnik: Beiträge der Oldenburger 3D-Tage 2020 (pp. 22-31). Wichmann Verlag, Berlin.
  • [37] Garashchenko, Y., Kogan, I., & Rucki, M. (2021). Analysis of 3D triangulated models of Madygenerpeton pustulatum fossil skull. Proceedings of the euspen’s 21st International Conference & Exhibition, Danemark, 89-90.
  • [38] Schoch, R. R., Voigt, S., & Buchwitz, M. (2010) A chroniosuchid from the Triassic of Kyrgyzstan and analysis of chroniosuchian relationships. Zoological Journal of the Linnean Society, 160, 515-530. https://doi.org/10.1111/j.1096-3642.2009.00613.x
  • [39] Mallison, H. & Wings, O. 2014. Photogrammetry in paleontology - a practical guide. Journal of Paleontological Techniques, 12, 1-31.
  • [40] Wójcik, A., Niemczewska-Wójcik, M., & Sładek, J. (2017). Assessment of Free-Form Surfaces’ Reconstruction Accuracy. Metrology and Measurement Systems, 24(2), 303-312. https://doi.org/10.1515/mms-2017-0035
Uwagi
1. The research was presented and discussed at the euspen’s 21st International Conference & Exhibition, Copenhagen, DK, June 2021. We thank the collection keeper Birgit Gaitzsch (Freiberg) for the permission to use the precious holotype of madygenerpeton pustulatum in our research. We are indebted to several colleagues who helped with the acquisition of 3D data: Daniel Eger Passos and Sascha Schmidt (Freiberg), Maik Jähne, Henrik Alhers and Thomas Reuter (Dresden), Kristin Mahlow and Tom Cvjetkovic (Berlin), Tomasz Szymański and Robert Długoszewski (Wrocław). The results presented in this paper were achieved in the frame of the ESF-funded young researcher group „G.O.D.S” (Geoscientific Objects Digitization Standards) at the TU Bergakademie Freiberg. This paper was supported by the Kazan Federal University Strategic Academic Leadership Program.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ea38883-a973-405e-b84e-6a76dc746752
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.