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EXISTENCE
OF MINIMAL AND MAXIMAL SOLUTIONS

TO RL FRACTIONAL INTEGRO-DIFFERENTIAL
INITIAL VALUE PROBLEMS
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Abstract. In this work we investigate integro–differential initial value problems with Riemann
Liouville fractional derivatives where the forcing function is a sum of an increasing function
and a decreasing function. We will apply the method of lower and upper solutions and develop
two monotone iterative techniques by constructing two sequences that converge uniformly
and monotonically to minimal and maximal solutions. In the first theorem we will construct
two natural sequences and in the second theorem we will construct two intertwined sequences.
Finally, we illustrate our results with an example.
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1. INTRODUCTION

Fractional differential equations arise in science and engineering as a more useful
tool than their integer counterpart for the modeling of natural phenomena, see the
books [1, 6, 9, 11,22,23] and the article [14] for more information. On the other hand,
monotone iterative methods are well established for nonlinear ordinary differential
equations, as it can be found in [10]. In recent years these methods have been applied
to differential equations with fractional derivatives, see the book [11] and the papers
[3–5,7, 8, 13–19,24–28] and [29].

Additionally, the basic theory and properties of integro–differential equations are
provided in the book [12]. This book introduces a monotone method for first order
ordinary integro–differential equations with periodic boundary conditions.

In this work we first establish a comparison theorem equivalent to the result
developed in [11] for a RL fractional integro–differential equation of order q, 0 < q < 1,
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with initial condition. Next, we will use the method of lower and upper solutions
combined with a generalized monotone iterative technique to prove the existence of
coupled minimal and maximal solutions. Finally we will prove that there exist either
natural or intertwined sequences that converge uniformly and monotonically to coupled
minimal and maximal solutions of the integro–differential initial value problem.

2. PRELIMINARY RESULTS

In this section we state the definition of the Riemann Liouville derivative and mention
several results that will be necessary to prove the main result of this work.

We begin by giving the definition of the Mittag–Leffler function.

Definition 2.1. The two parameter Mittag–Leffler function is defined as

Eα,β(t) =
∞∑

k=0

tk

Γ(αk + β) .

In particular E1,1(t) = et, and Eα,β(t) is also called the generalized exponential
function.

Let J = [a, b] be a finite real interval. The definition of Riemann Liouville fractional
derivative is given in [6, 9, 11,23] as follows.

Definition 2.2. The Riemann Liouville fractional derivative of order α, where n−1 ≤
α < n and n ∈ N, is denoted by Dα and defined by

Dαf(t) = 1
Γ(n− α)

(
d

dt

)n t∫

a

(t− s)n−α−1f(s)ds.

Consider the nonlinear initial value problem of the form

Dqu(t) = f (t, u(t)) ,
u(t)(t− a)1−q|t=a = u0.

(2.1)

Throughout this paper we will consider the Riemann Liouville derivative of order q,
where 0 < q < 1.

We recall the following definition.

Definition 2.3. Let 0 < q < 1 and p = 1− q. If G is an open set in R, then we denote
by Cp ([a, b], G) the function space

Cp ([a, b], G) =
{
u ∈ C ((a, b], G)

∣∣ (t− a)pu(t) ∈ C ([a, b], G)
}
.

If u ∈ Cp ([a, b], G), then u is said to be Cp continuous in [a, b].
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Remark 2.4. In [9] and [11] it was proven that if 0 < q < 1, G ⊂ R is an open set,
and f : (a, b]×G→ R is such that for any u ∈ G, f ∈ Cp ([a, b], G), then u satisfies
(2.1) if and only if it satisfies the Volterra fractional integral equation

u(t) = u0(t) + 1
Γ(q)

t∫

a

(t− s)q−1f(s, u(s))ds, (2.2)

where u0(t) = u0(t−a)q−1

Γ(q)
This relationship is especially true if f : [a, b]×G→ R is continuous.

If (2.1) is a non-homogeneous linear fractional differential equation, that is if
f(t, u(t)) = Mu(t) + f(t), where M is a real number and f ∈ Cp ([a, b],R), then the
solution is given by

u(t) = u0(t− a)q−1Eq,q (M(t− a)q) +
t∫

a

(t− s)q−1Eq,q (M(t− s)q) f(s)ds (2.3)

where t ∈ (a, b], and Eq,q(t) is the two parameter Mittag–Leffler function. See [11] for
details.

Now assume that u ∈ Cp ([a, b],R), Tu(t) =
∫ t
a
K(t, s)u(s)ds, and K ∈

C ([a, b]× [a, b],R) is a positive function. Since K is continuous and the integral
of a Cp continuous function is also Cp continuous, then Tu is Cp continuous and
Remark 2.4 can be generalized as follows:

Remark 2.5. The nonlinear integro–differential initial value problem

Dqu = f (t, u(t), Tu(t)) ,
u(t)(t− a)p|t=a = u0,

(2.4)

is equivalent to the Volterra fractional integral equation

u(t) = u0(t) + 1
Γ(q)

t∫

a

(t− s)q−1f (s, u(s), Tu(s)) ds. (2.5)

That is, every solution of (2.4) is a solution of (2.5) and viceversa.
In the rest of this section we state several comparison results relative to initial

value problems with the Riemann Liouville derivative.

Lemma 2.6. Let m ∈ Cp([a, b],R) and suppose that for any t1 ∈ (a, b] we have that
on (a, t1), m(t) ≤ 0, m(t1) = 0 and m(t)(t− a)p|t=a ≤ 0. Then Dqm(t1) ≥ 0.

Remark 2.7. The previous lemma was proven in [11] when m(t) is Hölder continuous
of order λ > q. However, in iterative methods it is not possible to prove that each of
the iterates are Hölder continuous of order λ > q. In [5] the authors proved this result
without assuming that m is Hölder continuous.
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We conclude this section with a comparison theorem and some important conse-
quences.

Theorem 2.8. Let J = [a, b], and suppose that there exist two functions v0(t), w0(t) ∈
C[J,R] with v0(t) < w0(t) such that the following conditions hold

(a) f, g ∈ C
(
J ×

[
v0(t), w0(t)

]
×
[
Tv0(t), Tw0(t)

])
,

(b) f is increasing in u and Tu, g is decreasing in u and Tu, and
(c) For v(t), w(t) ∈ Cp[J,R] such that v0(t) ≤ (t − a)pv(t), (t − a)pw(t) ≤ w0(t)

the following inequalities are true for t ∈ (a, b],

Dqv(t) ≤ f(t, v(t), T v(t)) + g(t, w(t), Tw(t)),
v(t)(t− a)p|t=a ≤ u0, and

Dqw(t) ≥ f(t, w(t), Tw(t)) + g(t, v(t), T v(t)),
w(t)(t− a)p|t=a ≥ u0.

(2.6)

Suppose further that f(t, u, Tu) and g(t, u, Tu) satisfy the following Lipschitz condition
for L1, L2 > 0, M1,M2 ≥ 0, and x ≥ y,

f(t, x, Tx)− f(t, y, Ty) ≤ L1(x− y) +M1T (x− y),
g(t, x, Tx)− g(t, y, Ty) ≥ −L2(x− y)−M2T (x− y),

(2.7)

then v(t)(t− a)p|t=a ≤ w(t)(t− a)p|t=a implies that

v(t) ≤ w(t), for a < t ≤ b.

Proof. Assume first without loss of generality that one of the inequalities in (2.6)
is strict, say Dqv(t) < f(t, v(t), T v(t)) + g(t, w(t), Tw(t)), and v0 < w0, where
(t − a)pv(t)|t=a = v0 and (t − a)pw(t)|t=a = w0. We will show that v(t) < w(t)
for t ∈ [a, b].

Suppose, to the contrary, that there exists t1 such that a < t1 ≤ b for which

v(t1) = w(t1), and v(t) < w(t) for t < t1.

Setting m(t) = v(t)− w(t) it follows that m(t1) = 0 and m(t) < 0 for a < t < t1.
Also, if a < s ≤ t1 then v(s) ≤ w(s) and

Tv(t1) =
t1∫

a

K(t1, s)v(s)ds ≤
t1∫

a

K(t1, s)w(s)ds = Tw(t1).

Then by Lemma 2.6 we have that Dqm(t1) ≥ 0. Thus

f (t1, v(t1), T v(t1)) + g (t1, w(t1), Tw(t1))
> Dv(t1) ≥ Dw(t1)
≥ f (t1, w(t1), Tw(t1)) + g (t1, v(t1), T v(t1)) ,



Existence of minimal and maximal solutions. . . 709

which is a contradiction to the assumption v(t1) = w(t1). Therefore v(t) < w(t)
for t > a.

Now assume that the inequalities in (2.6) are non strict. We will show that
v(t) ≤ w(t).

Set

vε(t) = v(t)− ε(t− a)q−1Eq,q (λ(t− a)q) , and
wε(t) = w(t) + ε(t− a)q−1Eq,q (λ(t− a)q) ,

where ε > 0, and λ > 1 is a constant that will be determined later.
This implies that

vε(t)(t− a)p|t=a = v0
ε = v(t)(t− a)p|t=a − εEq,q(0) < v0,

wε(t)(t− a)p|t=a = w0
ε = w(t)(t− a)p|t=a + εEq,q(0) > w0,

vε(t) < v(t), and wε(t) > w(t) for a < t ≤ b.
Hence,

Tvε(t) =
t∫

a

K(t, s)vε(s)ds ≤
t∫

a

K(t, s)v(s)ds = Tv(t),

and

Twε(t) =
t∫

a

K(t, s)wε(s)ds ≥
t∫

a

K(t, s)w(s)ds = Tw(t),

for t > a.
Using (2.6) and the Lipschitz condition (2.7), we find for t > a that

Dqvε(t)
= Dqv(t)− ελ(t− a)q−1Eq,q (λ(t− a)q)
≤ f (t, v(t), T v(t)) + g (t, w(t), Tw(t))− ελ(t− a)q−1Eq,q (λ(t− a)q)
= f (t, v(t), T v(t)) + g (t, w(t), Tw(t))− f (t, vε(t), T vε(t))
− g (t, wε(t), Twε(t)) + f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t))
− ελ(t− a)q−1Eq,q (λ(t− a)q)
≤ L1 (v(t)− vε(t)) +M1T (v(t)− vε(t)) + L2 (wε(t)− w(t))

+M2T (wε(t)− w(t)) + f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t))
− ελ(t− a)q−1Eq,q (λ(t− a)q)

= εL1(t− a)q−1Eq,q (λ(t− a)q) + εM1T
(
(t− a)q−1Eq,q (λ(t− a)q)

)

+ εL2(t− a)q−1Eq,q (λ(t− a)q) + εM2T
(
(t− a)q−1Eq,q (λ(t− a)q)

)

+ f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t))− ελ(t− a)q−1Eq,q (λ(t− a)q)
= ε (L1 + L2) (t− a)q−1Eq,q (λ(t− a)q)

+ ε (M1 +M2)T
(
(t− a)q−1Eq,q (λ(t− a)q)

)

+ f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t))− ελ(t− a)q−1Eq,q (λ(t− a)q) .
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Now consider the expression

T
(
(t− a)q−1Eq,q (λ(t− a)q)

)
=

t∫

a

K(t, s)(t− a)q−1Eq,q (λ(s− a)q) ds,

and let K0 = max
a≤s≤t≤b

{Γ(q)K(t, s)(t− s)p}. Clearly K0 > 0.
Then,

T
(
(t− a)q−1Eq,q (λ(t− a)q)

)

=
t∫

a

K(t, s)(s− a)q−1Eq,q (λ(s− a)q)
(

Γ(q)(t− s)q−1

Γ(q)(t− s)q−1

)
ds

≤ K0
Γ(q)

t∫

a

(t− s)q−1(s− a)q−1Eq,q (λ(s− a)q) ds

= lim
r→a+

K0
Γ(q)

t∫

r

(t− s)q−1(s− a)q−1Eq,q (λ(s− a)q) ds

= lim
r→a+

K0
λ

(s− a)q−1Eq,q (λ(s− a)q)
∣∣∣
t

r

= K0
λ

(t− a)q−1Eq,q (λ(t− a)q)− lim
r→a+

K0
λ

(r − a)q−1Eq,q (λ(r − a)q)

≤ K0
λ

(t− a)q−1Eq,q(λ(t− a)q).

We have now obtained that
cDqvε(t) ≤ ε (L1 + L2) (t− a)q−1 (Eq,q (λ(t− a)q))

+ ε

{
K0 (M1 +M2)

λ

}
(t− a)q−1Eq,q (λ(t− a)q)

+ f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t))
− ελ(t− a)q−1Eq,q (λ(t− a)q)

= ε

(
L1 + L2 + K0 (M1 +M2)

λ
− λ
)

(t− a)q−1Eq,q (λ(t− a)q)

+ f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t)) .

Choose λ = 2 [(L1 + L2) +K0(M1 +M2)] + 1, then

L1 + L2 + K0 (M1 +M2)
λ

− λ < 0,

and
cDqvε(t) < f (t, vε(t), T vε(t)) + g (t, wε(t), Twε(t)) .
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By a similar argument, we can show that
cDqwε(t) > f (t, wε(t), Twε(t)) + g (t, vε(t), T vε(t)) .

Now applying the result for strict inequalities to vε(t), wε(t), we get that vε(t) <
wε(t) for t ∈ J and for every ε > 0. That is

v(t)− εEq (λ(t− a)q) < w(t) + εEq (λ(t− a)q) ,

or
v(t) < w(t) + 2εEq (λ(t− a)q) .

Consequently, making ε→ 0, we get that v(t) ≤ w(t) for t ∈ J .
We now state the following corollary that will be needed to obtain our main results.

Corollary 2.9. Let m ∈ Cp[J,R] be such that

Dqm(t) ≤ Lm(t) +MTm(t), t ∈ (a, b],
m(t)(t− a)p|t=a ≤ 0,

where L > 0,M ≥ 0. Then we have from the previous theorem that

m(t) ≤ 0,

for a < t ≤ b. Similarly, if m ∈ Cp[J,R] is such that

Dqm(t) ≥ −Lm(t)−MTm(t), t ∈ (a, b],
m(t)(t− a)p|t=a ≥ 0,

for L > 0,M ≥ 0, then we have from the previous theorem that

m(t) ≥ 0,

for a < t ≤ b.
The result of Corollary 2.9 is still true even if L = M = 0, which we state separately.

Corollary 2.10. Let Dqm(t) ≤ 0 on (a, b]. Then m(t) ≤ 0 for t ∈ (a, b], if
m(t)(t− a)p|t=a ≤ 0.

3. MAIN RESULTS

In this section we will initially give the definition of coupled lower and upper
solutions and then we will develop two generalized monotone iterative techniques for
the nonlinear integro–differential initial value problem (3.1), given below.

Consider the problem

Dqu(t) = f (t, u(t), Tu(t)) + g (t, u(t), Tu(t)) ,
u(t)(t− a)p|t=a = u0,

(3.1)
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where J = [a, b], f, g ∈ C[J ×R×R,R], u ∈ Cp[J ×R], K ∈ C (J × J,R) is a positive

function, and Tu(t) =
t∫
a

K(t, s)u(s)ds.

If u ∈ Cp[a, b] satisfies the fractional differential equation

Dqu(t) = f (t, u(t), Tu(t)) + g (t, u(t), Tu(t)) ,

for t ∈ (a, b] and u is such that u(t)(t− a)p|t=a = u0, then u is said to be a solution
of (3.1).

Throughout the rest of this paper, we will assume that f is increasing in u
and Tu, and g is decreasing in u and Tu for t ∈ (a, b].

Next we provide the definition of coupled lower and upper solutions of (3.1).

Definition 3.1. Let v0, w0 ∈ Cp[J,R]. Then v0 and w0 are said to be

(a) natural lower and upper solutions of (3.1) if

Dqv0(t) ≤ f(t, v0(t), T v0(t)) + g(t, v0(t), T v0(t))
v0(t)(t− a)p|t=a ≤ u0,

Dqw0(t) ≥ f(t, w0(t), Tw0(t)) + g(t, w0(t), Tw0(t))
w0(t)(t− a)p|t=a ≥ u0;

(3.2)

(b) coupled lower and upper solutions of Type I of (3.1) if

Dqv0(t) ≤ f(t, v0(t), T v0(t)) + g(t, w0(t), Tw0(t))
v0(t)(t− a)p|t=a ≤ u0,

Dqw0(t) ≥ f(t, w0(t), Tw0(t)) + g(t, v0(t), T v0(t))
w0(t)(t− a)p|t=a ≥ u0;

(3.3)

(c) coupled lower and upper solutions of Type II of (3.1) if

Dqv0(t) ≤ f(t, w0(t), Tw0(t)) + g(t, v0(t), T v0(t))
v0(t)(t− a)p|t=a ≤ u0,

Dqw0(t) ≥ f(t, v0(t), T v0(t)) + g(t, w0(t), Tw0(t))
w0(t)(t− a)p|t=a ≥ u0;

(3.4)

(d) coupled lower and upper solutions of Type III of (3.1) if

Dqv0(t) ≤ f(t, w0(t), Tw0(t)) + g(t, w0(t), Tw0(t))
v0(t)(t− a)p|t=a ≤ u0,

Dqw0(t) ≥ f(t, v0(t), T v0(t)) + g(t, v0(t), T v0(t))
w0(t)(t− a)p|t=a ≥ u0.

(3.5)
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If we have upper and lower solutions of (3.1) of any Type then we can guarantee that
a solution u of (3.1) exists between them on (a, b] provided the correct requirements
are met. These requirements are detailed in the following lemma. We will only consider
equations of Type I and II since they are the specific ones we utilize in our main result.

Lemma 3.2. Assume that v0, w0 are coupled lower and upper solutions of type I
or II for (3.1) such that v0(t) ≤ w0(t) for t ∈ (a, b]. Further suppose

f, g ∈ C (J × [v0(t), w0(t)]× [Tv0(t), Tw0(t)],R) .

Then there exists a solution u ∈ Cp(J,R) of (3.1) such that v0(t) ≤ u(t) ≤ w0(t)
on (a, b].

This lemma is proved in the same way as seen in [5], with only minor additions
to account for the integral transformation. The following theorem concerns coupled
lower and upper solutions of the form (3.3). Next, we develop a generalized monotone
iterative technique for the integro-differential initial value problem. Finally, we obtain
natural sequences which converge uniformly and monotonically to coupled minimal
and maximal solutions of (3.1).

Theorem 3.3. Assume that

(A1) v0, w0 are coupled lower and upper solutions of type I for (3.1) with v0(t) ≤ w0(t)
in (a, b]; and

(A2) f, g ∈ C (J × [v0(t), w0(t)]× [Tv0(t), Tw0(t)],R), where f (t, u(t), Tu(t)) is
increasing in u and Tu and g (t, u(t), Tu(t)) is decreasing in u and in Tu.

If u(t) is a solution of (3.1) such that v0(t) ≤ u(t) ≤ w0(t) for all t ∈ (a, b], then the
sequences defined by

Dqvn+1(t) = f (t, vn(t), T vn(t)) + g (t, wn(t), Twn(t)) ,
vn+1(t)(t− a)p|t=a = u0,

(3.6)

and
Dqwn+1(t) = f

(
t, wn(t), Twn(t)

)
+ g
(
t, vn(t), T vn(t)

)
,

wn+1(t)(t− a)p|t=a = u0,
(3.7)

are such that

v0 ≤ v1 ≤ . . . ≤ vn ≤ vn+1 ≤ u ≤ wn+1 ≤ wn ≤ . . . ≤ w1 ≤ w0,

in (a, b], where the weighted sequences {(t− a)pvn(t)} and {(t− a)pwn(t)} are such
that (t − a)pvn(t) → (t − a)pρ(t) and (t − a)pwn(t) → (t − a)pr(t) uniformly and
monotonically in C[J,R], and ρ, r are coupled minimal and maximal solutions of (3.1);
i.e., ρ and r satisfy the coupled system

Dqρ(t) = f (t, ρ(t), Tρ(t)) + g (t, r(t), T r(t)) , t ∈ (a, b],
ρ(t)(t− a)p|t=a = u0,
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and

Dqr(t) = f (t, r(t), T r(t)) + g (t, ρ(t), Tρ(t)) , t ∈ (a, b],
r(t)(t− a)p|t=a = u0,

with ρ ≤ u ≤ r, t ∈ (a, b].

Proof. By Lemma 3.2, we know a solution u of (3.1) exists such that v0 ≤ u ≤ w0
as described in our hypothesis. We will show that v0 ≤ v1 ≤ u ≤ w1 ≤ w0.

It follows from (3.3) that

Dqv0(t) ≤ f(t, v0(t), T v0(t)) + g(t, w0(t), Tw0(t)),
v0(t)(t− a)p|t=a ≤ u0,

Dqw0(t) ≥ f(t, w0(t), Tw0(t)) + g(t, v0(t), T v0(t)),
w0(t)(t− a)p|t=a ≥ u0,

and by (3.6), we get that

Dqv1 = f (t, v0(t), T v0(t)) + g (t, w0(t), Tw0(t)) ,
v1(t)(t− a)p = u0.

Therefore, v0(t)(t− a)p|t=a ≤ u0 = v1(t)(t− a)p|t=a. If we let m = v0 − v1, then
m(t)(t− a)p|t=a ≤ 0 and

Dqm = Dqv0 −Dqv1

≤ f (t, v0, T v0) + g (t, w0, Tw0)− f (t, v0, T v0)− g (t, w0, Tw0) = 0.

Since Dqm ≤ 0 and m(t)(t − a)pt=a ≤ 0, by an application of Corollary 2.10
we have that m(t) ≤ 0 and, consequently, v0(t) ≤ v1(t) in (a, b].

Suppose that u is a solution of (3.1) such that v0(t) ≤ u(t) ≤ w0(t). In order to
prove that v1(t) ≤ u(t), observe that since v0(t) ≤ u(t) for each t in (a, b] and K > 0,
then

Tv0(t) =
t∫

a

K(t, s)v0(s)ds ≤
t∫

a

K(t, s)u(s)ds = Tu(t)

for each t ∈ (a, b]. Similarly we have that Tu(t) ≤ Tw0(t) for each t ∈ (a, b].
Letting m(t) = v1(t)− u(t), we have that

m(t)(t− a)p|t=a = (v1 − u)(t)(t− a)p|t=a = u0 − u0 = 0.

Moreover, by the increasing nature of f and the decreasing nature of g we have that

Dqm = Dqv1 −Dqu

= f (t, v0(t), T v0(t)) + g (t, w0(t), Tw0(t))
− f (t, u(t), Tu(t))− g (t, u(t), Tu(t)) ≤ 0,
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and, by Corollary 2.10, we have that v1(t) ≤ u(t). By a similar argument, we can show
that u(t) ≤ w1(t) and w1(t) ≤ w0(t). Thus, v0(t) ≤ v1(t) ≤ u(t) ≤ w1(t) ≤ w0(t).

Now we will show that vk ≤ vk+1 for k ≥ 1.
Assume that

vk−1(t) ≤ vk(t) ≤ u(t) ≤ wk(t) ≤ wk−1(t),

for k > 1 and t ∈ (a, b].
If a < s ≤ t ≤ b, we have that x1(s) ≤ x2(s) implies that

Tx1(t) =
t∫

a

K(t, s)x1(s)ds ≤
t∫

a

K(t, s)x2(s)ds = Tx2(t).

Thus
Tvk−1(t) ≤ Tvk(t) ≤ Tu(t) ≤ Twk(t) ≤ Twk−1(t).

Let m = vk − vk+1. Then

vk(t)(t− a)p|t=a = u0 = vk+1(t)(t− a)p|t=a,

so m(t)(t− a)1−a|t=a = 0. By the increasing nature of f and the decreasing nature
of g, it follows that

Dqm = Dqvk −Dqvk+1

= f (t, vk−1, T vk−1) + g (t, wk−1, Twk−1)− f (t, vk, T vk)− g (t, wk, Twk) ≤ 0.

Similarly, by Corollary 2.10, we have that m(t) ≤ 0 and consequently
vk(t) ≤ vk+1(t).

Using the hypothesis that v0(t) ≤ u(t) ≤ w0(t) in (a, b], the above argument and
induction we can also show that wk+1 ≤ wk, vk+1 ≤ u, and u ≤ wk+1. Therefore,
for n > 0,

v0 ≤ v1 ≤ v2 ≤ . . . ≤ vn ≤ u ≤ wn ≤ . . . ≤ w2 ≤ w1 ≤ w0.

Now we have to show that the weighted sequences converge uniformly. We will
use the Arzela-Ascoli Theorem by showing that the sequences are uniformly bounded
and equicontinuous.

First we show uniform boundedness. By hypothesis both v0(t)(t − a)p and
w0(t)(t− a)p are bounded on [a, b], then there existsM > 0 such that for any t ∈ [a, b],
|v0(t)(t− a)p| ≤M and |w0(t)(t− a)p| ≤M . Since

v0(t)(t− a)p ≤ vn(t)(t− a)p ≤ wn(t)(t− a)p ≤ w0(t)(t− a)p

for each n > 0, it follows that

0 ≤ (vn(t)− v0(t)) (t− a)p ≤ (wn(t)− v0(t)) (t− a)p ≤ (w0(t)− v0(t)) (t− a)p,

and consequently {vn(t)(t− a)p} and {wn(t)(t− a)p} are uniformly bounded.
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We will now prove that the weighted sequences are equicontinuous. Doing so will
require a few preliminaries. First, we can also show that the sequences {Tvn}, {Twn}
are uniformly bounded using that the weighted sequences are also uniformly bounded.
To do so let V be the uniform bound of {(t− a)pvn}, and let κ be the upper bound of
the function K(s, t) on J × J . Then we have

|Tvn| ≤
t∫

a

∣∣K(t, s)(s− a)pvn(s)
∣∣(s− a)q−1ds

≤ κV
t∫

a

(s− a)q−1ds ≤ κV (b− a)q
q

.

We can show that {Twn} is uniformly bounded similarly.
Now, for simplicity, let Fn be the function defined as

Fn(t) = f(t, vn(t), T vn(t)) + g(t, wn(t), Twn(t)).

Since f, g are continuous on J , and since each vn, wn are Cp continuous then there
exist continuous functions f̃ , g̃ such that

f(t, vn, T vn) + g(t, wn, Twn) = f̃(t, (t− a)pvn, T vn) + g̃(t, (t− a)pwn, Twn).

Given this, and that the weighted sequences and the transformed sequences are
uniformly bounded we can choose an N ≥ 0 such that Fn(t) ≤ N for all t ∈ J .

The last property we need to show that {vn(t)(t− a)p} is equicontinuous is that
the function

φ(t) = (t− a)p(t− s)−p

is decreasing in t for a < s ≤ t. To prove this note that

d
dtφ(t) = p(t− a)p−1(t− s)−p − p(t− a)p(t− s)−p−1

= −p(t− a)p−1(t− s)−p−1(s+ a) ≤ 0.

Now, let t, τ ∈ (a, b] and without loss of generality suppose t ≥ τ , implying
φ(t) ≤ φ(τ). Now we can show that

|(t− a)pvn(t)− (τ − a)pvn(τ)|

=
∣∣∣ (t− a)p

Γ(q)

t∫

a

(t− s)q−1Fn(s)ds− (τ − a)p
Γ(q)

τ∫

a

(τ − s)q−1Fn(s)ds
∣∣∣
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≤ (t− a)p
Γ(q)

t∫

τ

(t− s)q−1|Fn(s)|ds+ 1
Γ(q)

τ∫

a

|φ(t)− φ(τ)||Fn(s)|ds

≤ N(t− a)p
Γ(q)

t∫

τ

(t− s)q−1ds+ N

Γ(q)

τ∫

a

(
φ(τ)− φ(t)

)
ds

= N

Γ(q)

(
(t− a)p (t− τ)q

q
+ (τ − a)p

τ∫

a

(τ − s)q−1ds− (t− a)p
τ∫

a

(t− s)q−1ds
)

= N

qΓ(q)

(
2(t− a)p(t− τ)q + (τ − a)− (t− a)

)
≤ 2N(b− a)p

Γ(q + 1) (t− τ)q.

In the case that τ = a note

|(t− a)pvn(t)− u0| ≤ (b− a)p
Γ(q)

t∫

a

(t− s)q−1|Fn(s)|ds ≤ N(b− a)p
Γ(q + 1) (t− a)q.

So, letting ω = 2N(b−a)p

Γ(q+1) we have that

|(t− a)pvn(t)− (τ − a)pvn(τ)| ≤ ω|t− τ |q

for all t, τ ∈ J , implying that {(t− a)pvn(t)} is equicontinuous. Similarly, we can show
that {(t − a)pwn(t)} is equicontinuous. Since the weighted sequences are uniformly
bounded and equicontinuous, by the Ascoli-Arzelà Theorem, both have uniformly
convergent subsequences. Further, since both weighted sequences are monotone then
they must both converge uniformly. So, let (t − a)pρ and (t − a)pr be the uniform
limits of {(t− a)pvn} and {(t− a)pwn} respectively. Given this we also obtain that
vn → ρ and wn → r pointwise on (a, b].

Now we wish to show that ρ, r are coupled solutions of (3.1). To begin, we note
that every iterate of {K(s, t)vn(s)}, {K(s, t)wn(s)} are dominated by an integrable
function. To show this note

|K(s, t)vn(s)| ≤ κV (s− a)q−1,

where κ and V are defined as above, and

t∫

a

κV (s− a)q−1ds ≤ κV

q
(b− a)q <∞,

for all t ∈ (a, b]. We can show a similar result for {K(s, t)wn(s)}. Therefore, by applying
the Lebesgue Dominated Convergence Theorem we can show that Tvn(t) → Tρ(t)
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and Twn(t)→ Tr(t) pointwise for any t in (a, b]. Now due to all of the convergence
results we have shown and the continuity of f and g we now have that

(t− a)pvn+1 = u0

Γ(q) + (t− a)p
Γ(q)

t∫

a

(t− s)q−1(f(t, vn, T vn) + g(t, wn, Twn)
)
ds

converges uniformly to

(t− a)pρ = u0

Γ(q) + (t− a)p
Γ(q)

t∫

a

(t− s)q−1(f(t, ρ, Tρ) + g(t, r, T r)
)
ds

on J . Now dividing by (t− a)p we get

ρ(t) = u0(t) + 1
Γ(q)

t∫

a

(t− s)q−1(f(t, ρ, Tρ) + g(t, r, T r)
)
ds,

on (a, b]. Further we can also show that

r(t) = u0(t) + 1
Γ(q)

t∫

a

(t− s)q−1(f(t, r, T r) + g(t, ρ, Tρ)
)
ds.

Remark 2.5 yields that ρ, r are coupled solutions of (3.1).
To prove that ρ, r are minimal and maximal comes from previous work. We have

already proven that vn ≤ u ≤ wn for all n. Since u was a solution of (3.1) with
v0 ≤ u ≤ w0, if we let x be any solution of (3.1) with (t − a)px(t)|t=a = u0 and
v0 ≤ x ≤ w0 on (a, b], which we know exists thanks to Lemma 3.2, we can use
the same inductive arguments to prove that vn ≤ x ≤ wn for all n ≥ 0 and
for t ∈ (a, b]. Therefore, ρ ≤ x ≤ r on (a, b]. This implies that ρ, r are minimal
and maximal coupled solutions of (3.1), and completes the proof.

Finding coupled lower and upper solutions of Type I as in (3.3) is more challenging
than finding solutions of Type II, see the recent papers [2, 20, 21] for methods to
construct lower and upper solutions of the form (3.3) for different types of initial value
problems. With an additional assumption on the first iterate of each sequence, we
can construct intertwined sequences that converge uniformly and monotonically to
minimal and maximal solutions by using coupled lower and upper solutions of Type II
(3.4). Moreover, these sequences converge to a unique solution. The proof is similar to
the one in Theorem 3.3, so we state the result without a proof. We state the conditions
for uniqueness separately.
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Theorem 3.4. Assume that

(B1) v0, w0 are coupled lower and upper solutions of type II for (3.1) with v0(t) ≤ w0(t)
in (a, b]; and

(B2) f, g ∈ C (J × [v0(t), w0(t)]× [Tv0(t), Tw0(t)],R), where f (t, u(t), Tu(t)) is
increasing in u and Tu and g (t, u(t), Tu(t)) is decreasing in u and Tu.

Define the following sequences,

Dqvn+1(t) = f (t, wn(t), Twn(t)) + g (t, vn(t), T vn(t)) ,
vn+1(t)(t− a)p|t=a = u0,

(3.8)

and
Dqwn+1(t) = f

(
t, vn(t), T vn(t)

)
+ g
(
t, wn(t), Twn(t)

)
,

wn+1(t)(t− a)p|t=a = u0.
(3.9)

If u(t) is a solution of (3.1) such that v0(t) ≤ w1(t) ≤ u(t) ≤ v1(t) ≤ w0(t), t ∈ (a, b],
then (3.8) and (3.9) provide intertwined sequences of the form

v0 ≤ w1 ≤ v2 ≤ . . . ≤ v2n ≤ w2n+1 ≤ u
≤ v2n+1 ≤ w2n ≤ . . . ≤ w2 ≤ v1 ≤ w0,

where
{(t− a)pv2n(t), (t− a)pw2n+1(t)} → (t− a)pρ(t)

and
{(t− a)pw2n(t), (t− a)pv2n+1(t)} → (t− a)pr(t)

uniformly and monotonically in C[J,R], and ρ, r are coupled minimal and maximal
solutions of (3.1), respectively; i.e., ρ and r satisfy the coupled system

Dqρ(t) = f (t, ρ(t), Tρ(t)) + g (t, r(t), T r(t)) , t ∈ (a, b],
ρ(t)(t− a)1−q = u0,

and

Dqr(t) = f (t, r(t), T r(t)) + g (t, ρ(t), Tρ(t)) , t ∈ (a, b],
r(t)(t− a)p|t=a = u0,

with ρ ≤ u ≤ r in (a, b].

Remark 3.5. In addition to conditions (A1)–(A2) of Theorem 3.3 or (B1)–(B2)
of Theorem 3.4, suppose that there exist positive constants M1,M2, and non negative
constants N1, N2 such that f and g satisfy the following one–sided Lipschitz conditions
for x ≥ y,

f (t, x, Tx)− f (t, y, Ty) ≤M1(x− y) +N1T (x− y),
g (t, x, Tx)− g (t, y, Ty) ≥ −M2(x− y)−N2T (x− y),

(3.10)

then ρ = r = u; i.e., the sequences converge to a unique solution.



720 Z. Denton and J.D. Ramírez

We already proved that ρ ≤ r. In order to show that r ≤ ρ, let p(t) = r(t)− ρ(t).
Clearly,

p(t)(t− a)p|t=a = (r − ρ)(t)(t− a)p|t=a = u0 − u0 = 0.
Since ρ ≤ r we have from the conclusion of Theorem 3.3 and (3.10) that

Dqp = Dqr −Dqρ

= f (t, r, T r) + g (t, ρ, Tρ)− f (t, ρ, Tρ)− g (t, r, T r)
≤M1(r − ρ) +N1T (r − ρ) +M2(r − ρ) +N2T (r − ρ)
= (M1 +M2)(r − ρ) + (N1 +N2)T (r − ρ)
= (M1 +M2)p+ (N1 +N2)Tp.

We obtain from Corollary 2.9 that p(t) ≤ 0 for t ∈ (a, b] and, consequently,
r(t) ≤ ρ(t). Therefore ρ(t) = r(t) = u(t), and the sequences converge to the same
solution.

4. NUMERICAL RESULTS

In this section we present one example that illustrates the result from Theorem 3.4.
Example 4.1. Consider the following integro–differential initial value problem
of order q = 1

2 on J = [0, 1],

D1/2u = 2− t

8 + 1
8u(t) + 1

8

t∫

0

(1 + s)u(s)ds

− 1
16u

2(t)− 1
16




t∫

0

(1 + s)u(s)ds




2

,

u(0) = 0.

(4.1)

Here

Tu(t) =
t∫

0

(1 + s)u(s)ds.

Then the function

f (t, u(t), Tu(t)) = 2− t

8 + 1
8u(t) + 1

8

t∫

0

(1 + s)u(s)ds

is increasing in u and Tu, and

g (t, u(t), Tu(t)) = − 1
16u

2(t)− 1
16




t∫

0

(1 + s)u(s)ds




2



Existence of minimal and maximal solutions. . . 721

is decreasing in u and Tu for all t ∈ (0, 1]. We will show graphically that v0 = 0 and
w0 = 3 +

√
t are coupled lower and upper solutions of type II that satisfy (3.4) on

the interval J = [0, 1]. Clearly v0(t)t1/2|t=0 = w0(t)t1/2|t=0 = 0. Also,

D1/2v0(t) = 0,

D1/2w0(t) = 3√
πt

+ 2√
π
.

In Figure 1 we show the graph of f (t, w0(t), Tw0(t)) + g (t, v0(t), T v0(t)) and
in Figure 2 we show the graph of f (t, v0(t), T v0(t)) + g (t, w0(t), Tw0(t)).

Fig. 1. 0 = D1/2v0(t) ≤ f (t, w0(t), T w0(t)) + g (t, v0(t), T v0(t))

Fig. 2. cD1/2w0(t) ≥ f (t, v0(t), T v0(t)) + g (t, w0(t), T w0(t))
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We construct the sequences according to Theorem 3.4, in Figure 3 we show four
iterates of

{
t1/2vn(t)

}
and four iterates of

{
t1/2wn(t)

}
on [0, 1].

Fig. 3. Dashed: t1/2v0 ≤ t1/2w1 ≤ t1/2v2 ≤ t1/2w3 ≤ t1/2v4;
Solid: t1/2w4 ≤ t1/2v3 ≤ t1/2w2 ≤ t1/2v1 ≤ t1/2w0

Table 1. Table of ten points in [0, 1] of v4(t) and w4(t) for equation (4.1)

t v4(t) w4(t)
0.0 0.000000 0.000000
0.1 0.226289 0.226289
0.2 0.453429 0.453431
0.3 0.680861 0.680881
0.4 0.907949 0.908047
0.5 1.133821 1.134178
0.6 1.357143 1.358235
0.7 1.575812 1.578753
0.8 1.786538 1.793770
0.9 1.984275 2.000883
1.0 2.161438 2.197557

We have used Mathematica to compute the iterates, the graphs and the tables.
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