PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the effects of water withdrawal for hydraulic fracturing on surface water and groundwater - a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interaction between groundwater and surface water plays an important role in the function of riparian ecosystems and sustainable water resource management. Hydraulic fracturing, an unconventional oil and gas well stimulation method, has increased dramatically in North America in an effort to exploit previously inaccessible shale oil and gas reserves. Hydraulic fracturing often requires several thousand cubic meters of water to fracture the source formations. Use of such a high volume of water has raised considerable public concern over the sustainability of this activity and the potential impacts on surface water and groundwater. This paper provides a review of the published literature addressing the effects of water withdrawal for hydraulic fracturing on surface water and groundwater. The potential effects of such withdrawal are: decreased volume of water in rivers, streams, lakes and aquifers; alteration of natural flow regimes; regional water shortages during periods of drought; creating conflicts with other water users in water-stressed regions; inadequate downstream water availability; reduced downstream water quality for human uses, due to less water availability for dilution; and degradation of habitat and aquatic ecosystem function, impacting local wildlife. This review demonstrates that relatively little attention has been paid to quantify and understand these interactions, and suggests that there is a significant need for further research in this area to address the currently limited availability of data.
Twórcy
  • Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, Canada
  • Mount Royal University, 4825 Mt Royal Gate SW, Calgary, AB, Canada
Bibliografia
  • ALL Consulting, 2012, The modern practices of Hydraulic fracturing: a focus on Canadian resources, prepared for Petroleum Technology Alliance Canada and Science and Community Environmental Knowledge Fund, Tulsa, Oklahoma, 229 pp.
  • American Petroleum Institute, 2017, Hydraulic fracturing. Unlocking America’s natural gas resources, available online at https://www.api.org/~/media/Files/Oil-and-Natural-Gas/Hydraulic-Fracturing-primer/Hydraulic-Fracturing-Primer.pdf (data access 07.12.2020).
  • Barbot E., Vidic N.S., Gregory K.B., Vidic R.D., 2013, Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing, Environmental Science & Technology, 47 (6), 2562-2569, DOI: 10.1021/es304638h.
  • Barth-Naftilan E., Aloysius N., Saiers J.E., 2015, Spatial and temporal trends in freshwater appropriation for natural gas development in Pennsylvania’s Marcellus Shale Play, Geophysical Research Letter, 42 (15), 6348-6356, DOI: 10.1002/2015GL065240.
  • BC Oil & Gas Commission, 2012, Water use in oil and gas activities. 2012 Annual Report., available online at https://www.bcogc.ca/files/reports/Technical-Reports/annual-water-report-2012.pdf (data access 07.12.2020).
  • Best L.C., Lowry C.S., 2014, Quantifying the potential effects of high-volume water extractions on water resources during natural gas development: Marcellus Shale, NY, Journal of Hydrology: Regional Studies, 1, 1-16, DOI: 10.1016/j.ejrh.2014.05.001.
  • Brisbane Declaration, 2007, The Brisbane Declaration: environmental flows are essential for freshwater ecosystem health and human well-being, Declaration of the 10th International River symposium and International Environmental Flows Conference, Brisbane, Australia, 3-6 September 2007, available online at http://riverfoundation.org.au/wp-content/uploads/2017/02/THE-BRISBANE-DECLARATION.pdf (data access 11.12.2020).
  • Brittingham M.C., Maloney K.O., Farag A.M., Harper D.D., Bowen Z.H., 2014, Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats, Environmental Science & Technology, 48 (19), 11034-11047, DOI: 10.1021/es5020482.
  • Buchanan B.P., Auerbach D.A., McManamay R.A., Taylor J.M., Flecker A.S., Archibald J.A., Fuka D.R., Walter M.T., 2017, Environmental flows in the context of unconventional natural gas development in the Marcellus Shale, Ecological Applications, 27 (1), 37- 55, DOI: 10.1002/eap.1425.
  • Carlson M., Stelfox B., 2014, The cumulative effects of hydraulic fracturing in Alberta’s eastern slopes, prepared for the project: CWN Hydraulic Fracturing and Water-Landscape Impacts, 40 pp.
  • Chevron Canada, 2019, Water management Chevron’s approach to protecting this critical natural resource, available online at https://canada.chevron.com/environment/water-management (data access 07.12.2020).
  • Colborn T., Schultz K., Herrick L., Kwiatkowski C., 2014, An exploratory study of air quality near natural gas operations, Human and Ecological Risk Assessment: An International Journal, 20 (1), 86-105, DOI: 10.1080/10807039.2012.749447.
  • Cooley H., Donnelly K., 2012, Hydraulic fracturing and water resources: Separating the frack from the fiction, Pacific Institute, Oakland, CA, USA, 35 pp., available online at http://pacinst.org/wp-content/uploads/sites/21/2014/04/fracking-water-sources.pdf (data access 07.12.2020).
  • Cothren J., Thoma G., Diluzio M., Limp F., 2013, Integration of water resource models with Fayetteville Shale decision support and information system, Final Technical Report, University of Arkansas and Blackland Texas A&M Agrilife, DE-FC2609FE0000804, 161 pp.,. available online at https://core.ac.uk/download/pdf/188994778.pdf (data access 07.12.2020).
  • Dresel P., Rose A., 2010, Chemistry and origin of oil and gas well brines in Western Pennsylvania, Pennsylvania Geological Survey, 4th series Open-File Report OFOG 10-01.0; 48 pp.
  • Encana, 2013, 2013 Sustainability report, Calgary, Alberta, available at http://www.encana.com/pdf/sustainability/corporate/reports/sustainability-report-2013.pdf (07.12.2020).
  • Encana, 2019, Debolt facility provides alternative to surface water sources, available online at https://www.encana.com/news-stories/our-stories/environment-debolt-facility.html (data access 07.12.2020).
  • Entrekin S., Evans-White M., Johnson B., Hagenbuch E., 2011, Rapid expansion of natural gas development poses a threat to surface waters, Frontiers in Ecology and the Environment, 9 (9), 503-511, DOI: 10.1890/110053
  • Entrekin S., Trainor A., Saiers J., Patterson L., Maloney K., Fargione J., Kiesecker J., Baruch-Mordo S., Konschnik K., Wiseman H., Nicot J.-P., Ryan J.N., 2018, Water stress from high-volume hydraulic fracturing potentially threatens aquatic biodiversity and ecosystem services in Arkansas, United States, Environmental Science & Technology, 52 (4), 2349-2358, DOI: 10.1021/acs.est.7b03304.
  • Fontenot B.E., Hunt L.R., Hildenbrand Z.L., Carlton D.D., Oka H., Walton J.L., Hopkins D., Osorio A., Bjorndal B., Hu Q.H., Schug K.A., 2013, An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale formation, Environmental Science & Technology, 47 (17), 10032-10040, DOI: 10.1021/es4011724.
  • Freyman M., 2014, Hydraulic fracturing & water stress: Water Demand by the Numbers- Shareholder, Lender & Operator Guide to Water Sourcing, Ceres Report, available online at https://www.oilandgasbmps.org/viewpub.php?id=674 (data access 07.12.2020).
  • Gallegos T.J., Varela B.A., 2015, Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010 – Data analysis and comparison to the literature, U.S. Geological Survey Scientific Investigations, Report 2014-5131, 15 pp., available online at https://pubs.usgs.gov/sir/2014/5131/ (data access 07.12.2020).
  • Gordalla B.C., Ewers U., Frimmel F.H., 2013, Hydraulic fracturing: a toxicological threat for groundwater and drinking-water?, Environmental Earth Science, 70, 3875-3893, DOI: 10.1007/s12665-013-2672-9.
  • Gregory K.B., Vidic R.D., Dzombak D.A., 2011, Water management challenges associated with the production of shale gas by hydraulic fracturing, Elements, 7, 181-186, DOI: 10.2113/gselements.7.3.181.
  • Holland A., 2011, Examination of possibly induced seismicity from hydraulic fracturing in the Eola Field, Garvin County, Oklahoma, Oklahoma Geological Survey, Open-File Report, OF1-2011, 31 pp., available online at http://www.ogs.ou.edu/pubsscanned/openfile/OF1_2011.pdf (data access 07.12.2020).
  • Howarth R.W., Santoro R., Ingraffea A., 2011, Methane and the greenhouse-gas footprint of natural gas from shale formations, Climatic Change, 106, 679-690, DOI: 10.1007/s10584-011-0061-5.
  • Kalbus E., Reinstorf F., Schirmer M., 2006, Measuring methods for groundwater-surface water interactions: a review, Hydrology and Earth System Science, 10, 873-887, DOI: 10.5194/hess-10-873-2006.
  • Kargbo D.M., Wilhelm R.G., Campbell D.J., 2010, Natural gas plays in the Marcellus Shale: challenges and potential opportunities, Environmental Science & Technology, 44, 5679-5684, DOI: 10.1021/es903811p.
  • Keranen K.M., Weingarten M., Abers G.A., Bekins B.A., Ge S., 2014, Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345 (6195), 448-451, DOI: 10.1126/science.1255802.
  • Kondash A.J., Lauer N.E., Vengosh, A., 2018, The intensification of the water footprint of hydraulic fracturing, Science Advances, 4 (8), eaar5982, DOI: 10.1126/sciadv.aar5982.
  • Kuwayama Y., Olmstead S., Krupnick A., 2015, Water quality and quantity impacts of hydraulic fracturing, Current Sustainable Renewable Energy Reports, 2, 17-24, DOI: 10.1007/s40518-014-0023-4.
  • Lin Z., Lin T., Lim S.H., Hove M.H., Schuh W.M., 2018, Impacts of Bakken Shale oil development on regional water uses and supply, Journal of the American Water Resources Association, 54 (1), 225-239, DOI: 10.1111/1752-1688.12605.
  • Liu C., Zhang Z., Balay J.W., 2018, Posterior assessment of reference gages for water resources management using instantaneous flow measurements, Science of the Total Environment, 634, 12-19, DOI: 10.1016/j.scitotenv.2018.03.312.
  • MacQuarrie A., 2018, Case study analysis on the impacts of surface water allocations for hydraulic fracturing on surface water availability of the Upper Athabasca River, Master’s Thesis, Royal Roads University, 117 pp., available online at https://viurrspace.ca/handle/10613/5688 (data access 07.12.2020).
  • Myers T., 2012, Potential contaminant pathways from hydraulically fractured shale to aquifers, Groundwater, 50 (6), 872-882, 10.1111/j.1745-6584.2012.00933.x.
  • Naumburg E., Mata-Gonzalez R., Hunter R., Mclendon T., Martin D., 2005, Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation, Environmental Management, 35, 726-740, DOI: 10.1007/s00267-004-0194-7.
  • Nicot J.P., Scanlon B.R., 2012, Water use for Shale - Gas production in Texas, U.S., Environmental Science & Technology, 46 (6), 3580-3586, DOI: 10.1021/es204602t.
  • Oil and Gas Info, 2019, All about fracking, available online at https://oilandgasinfo.ca/all-about-fracking/ (data access 07.12.2020).
  • Olmstead S.M., Muehlenbachs L.A., Shih J., Chu Z., Krupnick A.J., 2013, Shale gas development impacts on surface water quality, [in:] Proceedings of the National Academy of Sciences of the United States of America, 10 (13), 4962-4967.
  • Osborn S.G., Vengosh A., Warner N.R., Jackson R.B., 2011, Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing, [in:] Proceedings of the National Academy of Sciences of the United States of America, 108 (20), 8172-8176.
  • Rahm B.G., Riha S.J., 2012, Toward strategic management of shale gas development: regional, collective impacts on water resources, Environmental Science & Policy, 17, 12-23, DOI: 10.1016/j.envsci.2011.12.004.
  • Richardson N., Gottlieb M., Krupnick A., Wiseman H, 2013, The state of state shale gas regulation, Resources For The Future Report, available online at https://www.rff.org/publications/reports/the-state-of-state-shale-gas-regulation/ (data access 07.12.2020).
  • Rivard C., Lavoie D., Lefebvre R., Sejourne S., Lamontagne C., Duchesne M., 2014, An overview of Canadian Shale gas production and environmental concerns, International Journal of Coal Geology, 126, 64-76, DOI: 10.1016/j.coal.2013.12.004.
  • Rosa L., D'Odorico P., 2019, The water-energy-food nexus of unconventional oil and gas extraction in the Vaca Muerta Play, Argentina, Journal of Cleaner Production, 207, 743-750, DOI: 10.1016/j.jclepro.2018.10.039.
  • Rowan E., Engle M., Kirby C., Kraemer T., 2011, Radium content of oil- and gas-field produced waters in the northern Appalachian Basin (USA): summary and discussion of data, U.S. Geological Survey Scientific Investigations Report 513, 31 pp., DOI: 10.3133/sir20115135.
  • Saha G.C., 2016, Investigation of temporal dynamics of hydraulic fracturing and water use: a case study from northwestern Alberta, Canada, [in:] Under Western Skies 2016, September 27-30, Calgary, Kanada.
  • Shank M.K., Stauffer Jr. J.R., 2015, Land use and surface water withdrawal effects on fish and macroinvertebrate assemblages in the Susquehanna River basin, USA, Journal of Freshwater Ecology, 30 (2), 229-248, DOI: 10.1080/02705060.2014.959082.
  • Sharma S., Shrestha A., McLean C.E., Martin S.C., 2015, Hydrologic modelling to evaluate the impact of hydraulic fracturing on stream low flows: challenges and opportunities for a simulation study, American Journal of Environmental Sciences, 11 (4), 199- 215, DOI: 10.3844/ajessp.2015.199.215.
  • Shrestha A., Sharma S., McLean C.E., Kelly B.A., Martin S.C., 2016, Scenario analysis for assessing the impact of hydraulic fracturing on stream low flows using the SWAT model, Hydrological Sciences Journal, 62 (5), 849-861, DOI: 10.1080/02626667.2016.1235276.
  • Sophocleous M., 2002, Interactions between groundwater and surface water: the state of the science, Journal of Hydrogeology, 10, 52- 67, DOI: 10.1007/s10040-001-0170-8.
  • Su X.S., Cui G., Wang H., Dai Z.X., Woo Nam-Chil., Yuan W.Z., 2018, Biogeochemical zonation of sulfur during the discharge of groundwater to lake in desert plateau (Dakebo Lake, NW China), Environmental Geochemistry and Health, 40 (3), 1051-1066, DOI: 10.1007/s10653-017-9975-9.
  • Sullivan K., Cyterski M., Kraemer S., Knightes C., Price K., Kim K., Prieto L., Gabriel M., Sidle R., 2015, Case study analysis of the impacts of water acquisition for hydraulic fracturing on local water availability, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/179, available online at https://www.epa.gov/sites/production/files/2015-07/documents/hf_water_acquisition_report_final_6-3-15_508_km.pdf (data access 07.12.2020).
  • U.S. Chamber of Commerce Foundation, 2019, Recycling water in hydraulic fracturing, available online at https://www.uschamberfoundation.org/recycling-water-hydraulic-fracturing (data access 07.12.2020).
  • United States Environmental Protection Agency, 2015, Analysis of Hydraulic Fracturing Fluid Data from the FracFocus Chemical Disclosure Registry 1.0, Office of Research and Development, Washington, DC, EPA/601/R-14/003, available online at https://www.epa.gov/hfstudy/analysis-hydraulic-fracturing-fluid-data-fracfocus-chemical-disclosure-registry-1-pdf (data access 07.12.2020).
  • Vandecasteele I., Marí Rivero I., Sala S., Baranzelli C., Barranco R., Batelaan O., Lavalle C., 2015, Impact of shale gas development on water resources: a case study in Northern Poland, Environmental Management, 55, 1285-1299, DOI: 10.1007/s00267-015-0454-8.
  • Vengosh A., Warner N., Jackson R., Darrah T., 2013, The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States, Procedia Earth and Planetary Science, 7, 863-866, DOI: 10.1016/j.proeps.2013.03.213.
  • Vengosh A., Jackson R.B., Warner N., Darrah T.H., Kondash A., 2014, A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States, Environmental Science & Technology, 48 (15), 8334-8348, DOI: 10.1021/es405118y.
  • Vidic R.D., Brantley S.L., Vandenbossche M., Yoxtheimer D., Abad J.D., 2013, Impact of shale gas development on regional water quality, Science, 340, 6134, DOI: 10.1126/science.1235009.
  • Warner N.R., Christie C.A., Jackson R.B., Vengosh A., 2013, Impacts of shale gas wastewater disposal on water quality in Western Pennsylvania, Environmental Science & Technology, 47(20), 11849-11857, DOI: 10.1021/es402165b.
  • Warner N.R., Jackson R.B., Darrah T.H., Osborn S.G., Down A., Zhao K., White A., Vengosh A., 2012, Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania, [in:] Proceedings of the National Academy of Sciences of the United States of America, 109 (30), 11961-11966, DOI: 10.1073/pnas.1121181109.
  • Wu X., Xia J., Guan B., Yan X., Zou L., Liu P., Yang L., Hong S., Hu, S., 2019, Water availability assessment of shale gas production in the Weiyuan Play, China, Sustainability, 11 (3), 940, DOI: 10.3390/su11030940.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e9f2bb2-79e0-4be0-91e6-715eb9f2e810
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.