Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the model of stress dependence of 2D relative magnetic permeability of anisotropic, grain-oriented M120-27s electrical steel suitable for finite element method modeling. The proposed model was developed based on experimental results acquired using the measuring setup with a testing yoke equipped with a Cardan gyroscopic mechanism and hydraulic press. In the presented model, parameters of the tensor description of 2D relative magnetic permeability were chosen during the feature selection process and identified during differential evolution optimization. The good quality of the proposed model was quantitatively confirmed by the R-squared coefficient, which exceeds 0.997 for all plots of the 2D relative magnetic permeability tensor.
Czasopismo
Rocznik
Tom
Strony
1123 --1135
Opis fizyczny
Bibliogr. 27 poz., fot., rys., wykr., wz.
Twórcy
autor
- Faculty of Mechatronics, Warsaw University of Technology, Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
autor
- Faculty of Mechatronics, Warsaw University of Technology, Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
autor
- Faculty of Mechanical Engineering, Department of Physics, Kazimierz Pulaski Radom University Stasieckiego 54, 26-600 Radom, Poland
autor
- Department of Mechatronics, Robotics and Digital Manufacturing, Faculty of Mechanics Vilnius Gediminas Technical University, Plytines g. 25, LT-10105 Vilnius, Lithuania
Bibliografia
- [1] Yamaguchi H., Muraki M., Komatsubara M., Application of CVD method on grain-oriented electrical steel, Surface and Coatings Technology, vol. 200, no. 10, pp. 3351–3354 (2006), DOI: 10.1016/ j.surfcoat.2005.07.051.
- [2] Du Y., O’Malley R., Buchely M.F., Review of magnetic properties and texture evolution in non-oriented electrical steels, Applied Sciences, vol. 13, no. 10, 6097 (2023), DOI: 10.3390/app13106097.
- [3] Gao L., Zeng L., Yang J., Pei R., Application of grain-oriented electrical steel used in super-high speed electric machines, AIP Advances, vol. 10, no. 1 (2020), DOI: 10.1063/1.5130151.
- [4] Electrical steel market size, share & growth report, 2030, Electrical Steel Market Size, Share & Growth Report, 2030, https://www.grandviewresearch.com/industry-analysis/electrical-steel-market, accessed July 9 2024.
- [5] Erhunmwun I.D., Ikponmwosa U.B., Review on Finite Element Method, Journal of Applied Sciences and Environmental Management, vol. 21, no. 5, 999 (2017), DOI: 10.4314/jasem.v21i5.30.
- [6] Kondov I., Sutmann G., Multiscale Modelling Methods for Applications in Materials Science Cecam Tutorial, 16–20 September 2013, Forschungszentrum Jülich; Lecture Notes Cecam Tutorial Multiscale Modelling Methods for Applications in Materials Science, Organized by Karlsruhe Institute of Technology, Forschungszentrum Jülich, Forschungszentrum Jülich, Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Publ.: Forschungszentrum Jülich GmbH, Zentralbibliothek, Ed. by Ivan Kondov; Godehard Sutmann, Jülich: Forschungszentrum, Zentralbibliothek (2013).
- [7] Rubio M.E., Stasyszyn F.A., Ill-posedness of the mean-field dynamo equations with a linear electromotive force, Physica D: Nonlinear Phenomena, vol. 430, 133097 (2022), DOI: 10.1016/j.physd.2021.133097.
- [8] Jiles D.C., Atherton D.L., Theory of ferromagnetic hysteresis (invited), Journal of Applied Physics, vol. 55, no. 6, pp. 2115–2120 (1984), DOI: 10.1063/1.333582.
- [9] Jiles D.C., Atherton D.L., Theory of ferromagnetic hysteresis, Journal of Magnetism and Magnetic Materials, vol. 61, no. 1–2, pp. 48–60 (1986), DOI: 10.1016/0304-8853(86)90066-1.
- [10] Lihua Z., Jingjing L., Qingxin Y., Jianguo Z., Koh C.-S., An improved magnetostriction model for electrical steel sheet based on Jiles–Atherton Model, IEEE Transactions on Magnetics, vol. 56, no. 3, pp. 1–4 (2020), DOI: 10.1109/tmag.2019.2951824.
- [11] Raghunathan A., Melikhov Y., Snyder J.E., Jiles D.C., Generalized form of anhysteretic magnetization function for Jiles–Atherton Theory of hysteresis, Applied Physics Letters, vol. 95, no. 17 (2009), DOI: 10.1063/1.3249581.
- [12] Baghel A.P.S. et al., An alternative approach to model mechanical stress effects on magnetic hysteresis in electrical steels using complex permeability, Computational Materials Science, vol. 166, pp. 96–104 (2019), DOI: 10.1016/j.commatsci.2019.03.048.
- [13] Tolentino G.C., Leite J.V., Parent G., Batistela N.J., Implementation of the magnetic anisotropy in 2D finite element method using the theory of orientation distribution functions, 2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC) (2020), DOI: 10.1109/cefc46938.2020.9451381.
- [14] Chwastek K., Anisotropic properties of non-oriented steel sheets, IET Electric Power Applications, vol. 7, no. 7, pp. 575–579 (2013), DOI: 10.1049/iet-epa.2013.0087.
- [15] R˛ekas P., Nowicki M., Gazda P., Charubin T., Szumiata T., Szewczyk R., A measuring setup for testing the mechanical stress dependence of magnetic properties of electrical steels, Journal of Magnetism and Magnetic Materials, vol. 577, 170791 (2023), DOI: 10.1016/j.jmmm.2023.170791.
- [16] Szumiata T., Rekas P., Gzik-Szumiata M., Nowicki M., Szewczyk R., The two-domain model utilizing the effective pinning energy for modeling the strain-dependent magnetic permeability in anisotropic grain-oriented electrical steels, Materials, vol. 17, no. 2, 369 (2024), DOI: 10.3390/ma17020369.
- [17] Rękas P., Szumiata T., Szewczyk R., Gzik-Szumiata M., Nowicki M., Influence of mechanical stresses noncoaxial with the magnetizing field on the relative magnetic permeability of electrical steel, IEEE Transactions on Magnetics, vol. 60, iss. 8 (2024), DOI: 10.1109/tmag.2024.3418668.
- [18] Büyükkeçeci M., Okur M.C., A comprehensive review of feature selection and feature selection stability in machine learning, Gazi University Journal of Science, vol. 36, no. 4, pp. 1506–1520 (2023), DOI: 10.35378/gujs.993763.
- [19] Pudjihartono N., Fadason T., Kempa-Liehr A.W., O’Sullivan J.M., A review of feature selection methods for machine learning-based disease risk prediction, Frontiers in Bioinformatics, vol. 2 (2022), DOI: 10.3389/fbinf.2022.927312.
- [20] Ahmad M.F., Isa N.A., Lim W.H., Ang K.M., Differential evolution: A recent review based on state-of-the-art works, Alexandria Engineering Journal, vol. 61, no. 5, pp. 3831–3872 (2022), DOI: 10.1016/j.aej.2021.09.013.
- [21] Opara K.R., Arabas J., Differential evolution: A survey of theoretical analyses, Swarm and Evolutionary Computation, vol. 44, pp. 546–558 (2019), DOI: 10.1016/j.swevo.2018.06.010.
- [22] Krause T.W., Krause A.K., Underhill P.R., Kashefi M., Modeling magnetization processes in steel under stress using magnetic objects, Journal of Applied Physics, vol. 131, no. 17 (2022), DOI: 10.1063/ 5.0088329.
- [23] Ito S., Mifune T., Matsuo T., Kaido C., Takahashi Y., Fujiwara K., Simulation of the stress dependence of hysteresis loss using an energy-based domain model, AIP Advances, Special Collection: 23rd Soft Magnetic Materials Conference, vol. 8, no. 4, 047501 (2017), DOI: 10.1063/1.4993661.
- [24] Nagelkerke N.J., A note on a general definition of the coefficient of determination, Biometrika, vol. 78, no. 3, pp. 691−692 (1991), DOI: 10.1093/biomet/78.3.691.
- [25] Yin P., Fan X., Estimating R2 shrinkage in multiple regression: A comparison of different analytical methods, The Journal of Experimental Education, vol. 69, no. 2, pp. 203–224 (2001), DOI: 10.1080/00220970109600656.
- [26] Vencels J., Råback P., Geža V., EOF-Library: Open-source Elmer Fem and openfoam coupler for electromagnetics and Fluid Dynamics, SoftwareX, vol. 9, pp. 68–72 (2019), DOI: 10.1016/j.softx.2019.01.007.
- [27] Safinowski M., Szudarek M., Szewczyk R., Winiarski W., Capabilities of an open-source software, Elmer FEM, in finite element analysis of fluid flow, Recent Advances in Systems, Control and Information Technology, pp. 118–126 (2016), DOI: 10.1007/978-3-319-48923-0_16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e9eb07f-5246-49a0-8019-007deb3ae6e5