PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Computational modeling of creep in complex plane for reinforced materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computational modeling for predicting the steady state creep behavior is presented in complex plane for reinforced materials by complex variable method. Both the fiber and matrix simultaneously creep at elevated temperatures and loading. We suppose that one dimension of the short fiber is small enough in comparison with the other two (see Fig. 1). In this formulation, plane stress state is used. Finally, displacement rate behaviors are predicted using compatibility, equilibrium, constitutive, and governing equations by complex variable method. One of the considerable applications of the method is in nano-composites analysis in elasticity or plasticity research.
Słowa kluczowe
Rocznik
Strony
909--916
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
  • Young Researchers and Elite Club, Zanjan Branch, Islamic Azad University, Zanjan, Iran
Bibliografia
  • [1] N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, 4th ed., Moscow: Noordhoff, 1954.
  • [2] L.M. Milne-Thomson, Plane Elastic Systems, 1st ed., Berlin: Springer Verlag, 1960.
  • [3] A.E. Green and W. Zerna, Theoretical Elasticity, 2nd ed., London: Oxford University Press, 1968.
  • [4] A.H. England, Complex Variable Methods in Elasticity, 1st ed., New York: John Wiley, 1971.
  • [5] X.L. Gao, “Alternative derivation of Marguerre’s displacement solution in plane isotropic elasticity”, ASME J. Appl. Mech. 67, 419–421 (2000).
  • [6] P. Barai and G.J. Weng, “A micro-continuum model for the creep behavior of complex nanocrystalline materials”, Int. J. Eng. Sci. 49 (1), 155–174 (2011).
  • [7] T. Tang, M.F. Horstemeyer, and P. Wang, “Micromechanical analysis of thermoelastoplastic behavior of metal matrix composites”, Int. J. Eng. Sci. 51, 161–167 (2012).
  • [8] Y. Li and Z. Li, “Transverse creep and stress relaxation induced by interface diffusion in unidirectional metal matrix composites”, Compos. Sci. Technol. 72, 1608‒1612 (2012).
  • [9] A. Loghman and V. Atabakhshian, “Semi-analytical solution for time-dependent creep analysis of rotating cylinders made of anisotropic exponentially graded material (EGM)”, J. Solid. Mech. 4, 313‒326 (2012).
  • [10] E. Hamed and Z.T. Chang, “Effect of creep on the edge debonding failure of FRP strengthened RC beams – A theoretical and experimental study”, Compos. Sci.Technol. 74, 186‒193 (2013).
  • [11] V. Monfared, S. Daneshmand and J.N. Reddy, “Rate dependent plastic deformation analysis of short fiber composites employing virtual fiber method”, J. Comput. Sci. 10, 26‒35 (2015).
  • [12] V. Monfared, S. Daneshmand, and A.H. Monfared, “Effects of atomic number and atomic weight on inelastic time dependent deformations”, Kovov. Mater. 53 (2), 85‒89 (2015).
  • [13] Martin H. Sadd, Elasticity: Theory, Applications, and Numerics, 3rd Edition, Academic Press, 2014.
  • [14] P.K. Duttaa and D. Hui, “Creep rupture of a GFRP comoposite at elevated temperatures”, Comput Struct, 2000, 76 153–161 (2000).
  • [15] M. Hongyin and M. Sankaran, “Probabilistic analysis of creep of metal-matrix composites”, J. Reinf. Plast. Compos. 21(7), 587‒602 (2002).
  • [16] M. Sankaran and M. Hongyin, “Probabilistic fatigue–creep life prediction of composites”, J. Reinf. Plas. Compos. 23(4), 361‒371 (2004).
  • [17] J.R. Pachalis and T.W. Chou, “Modeling of creep of misaligned short-fiber reinforced ceramic composites”, J. Appl. Mech, 59(1), 27‒32 (1992).
  • [18] G.V. Kolosov, “On the application of complex function theory to a plane problem of the mathematical theory of elasticity”, 1st ed. Moscow: Yuriev University Press, 1909.
  • [19] A. Zbiciak, “Mathematical description of rheological properties of asphalt-aggregate mixes”, Bull. Pol. Ac.: Tech, 61 (1), 65–72 (2013).
  • [20] G. Leonardi, “Finite element analysis for airfield asphalt pavements rutting prediction”, Bull. Pol. Ac.: Tech, 63 (2), 397–403 (2015).
  • [21] V. Monfared, “A micromechanical creep model for stress analysis of non-reinforced regions of short fiber composites using imaginary fiber technique”, Mech. Mater. 86, 44–54 (2015).
  • [22] K.H. Grote and E.K. Antonsson, Handbook of Mechanical Engineering, Springer, 108‒115, 2009.
  • [23] J.T. Boyle and J. Spence, Stress Analysis for Creep, 1st ed. Butterworth-Heinemann, Southampton: Butterworth, UK, 1983.
  • [24] Z. Chen, C. Majidi, D.J. Srolovitz, and M. Haataja, “Continuum elasticity theory approach for spontaneous bending and twisting of ribbons induced by mechanical anisotropy”, arXiv preprint arXiv:1209.3321 (2012).
  • [25] A.K. Gaharwar, A. Patel, A. Dolatshahi-Pirouz, H. Zhang, K. Rangarajan, G. Iviglia, S.-R. Shin, M.A. Hussain, and A. Khademhosseini, “Elastomeric nanocomposite scaffolds made from poly (glycerol sebacate) chemically crosslinked with carbon nanotubes”, Biomater. Sci., 3, 46‒58.doi 10.1039/C4BM00222A (2015)
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e9e7c24-be3b-494c-982d-e9880e4d16e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.