Henryk HOLKA¹, Tomasz JARZYNA²

e-mail: hhenryk@vp.pl

¹ Bydgoska Szkoła Wyższa, Bydgoszcz

² Zakład Mechaniki Stosowanej, Uniwersytet Technologiczno-Przyrodniczy, Bydgoszcz

Badania doświadczalne wpływu temperatury na prostoliniowość wałów wielkogabarytowych

Wstęp

Wielkogabarytowe wały wytwarzane są z rur, na końcach których montowane są czopy (Rys. 1). Łączna długość takiego elementu sięga kilkunastu metrów. Znajdują one zastosowanie m.in. w przemyśle, cementowym, papierniczym czy drzewnym [*Borowiecki*, 1980].

Rys. 1. Widok ogólny wału

Wały realizują określone procesy technologiczne w wyniku ruchu obrotowego z niewielkimi prędkościami kątowymi wokół swej osi. Ważne jest, aby współosiowość czopów względem rury mieściła się w granicach założonych tolerancji. Ma na to wpływ dokładność realizacji następujących procesów technologicznych towarzyszących wykonaniu wałów, takich jak:

- weryfikacja prostoliniowości osi geometrycznej rury i ewentualna jej korekta, przy czym prostowanie rury odbywa się za pomocą odpowiedniego, punktowego jej nagrzewania palnikiem gazowym;
- zamocowanie i pozycjonowanie (ustalanie) czopów w rurze za pomocą spawania elektrycznego.

Oba procesy są bardzo czasochłonne, co wynika z konieczności studzenia rury po każdym jej podgrzaniu.

Celem pracy było przybliżenie zagadnień zarówno teoretycznych jak i doświadczalnych towarzyszących prostowaniu wałów wielko-gabarytowych.

Charakterystyka stanowiska

Dokonano kompleksowej modernizacji stanowiska przemysłowego (Rys. 2 i 3), aby usprawnić technologię prostowania rury oraz centrowania czopów.

Rys. 2. Widok ogólny stanowiska do prostowania rur i osiowania czopów

Zasadnicze zmiany polegały na zastąpieniu układu pomiarowego (składającego się z tradycyjnych czujników zegarowych) przez w pełni zautomatyzowany system wykorzystujący laserowe czujniki przemieszczeń.

[*Cyprys i in.*, 2015]

Przed przystąpieniem do prostowania rura – 1 jest mocowana w dwóch pierścieniach centrujących – 2, usytuowanych możliwie blisko jej końców, a następnie układana na obrotnikach – 3 (obrotnik napędowy) i 4. Utwierdzenie rury w każdym z pierścieni odbywa się za pomocą dwunastu śrub usytuowanych w dwóch rządach (Rys. 4). Zasadnicze pozycjonowanie realizowane jest za pomocą śrub A, B, C rozmieszczonych co 120°, natomiast rolą pozostałych śrub jest poprawienie stabilności zamocowania.

Rys. 4. Sposób zamocowania rury w pierścieniach centrujących

Pozycjonowanie rury w pierścieniach przeprowadza się w oparciu o pomiary dokonywane za pomocą laserowych czujników przemieszczeń – 6 i 8, natomiast do prostowania rury wykorzystuje się laserowy czujnik – 7 ustawiony w połowie długości rury. Do poprawnego ustawienia wymienionych czujników na tej samej wysokości stosuje się laser – 5, którego wiązkę rzutuje się na zewnętrzną powierzchnię rury.

Dzięki wykorzystaniu przetwornika obrotowo-impulsowego, pomiary z czujników – 6, 7, 8, dokonywane są w funkcji położenia kątowego wału. Pozycja początkowa oznaczona jest znacznikiem magnetycznym – 10, którego położenie rejestruje czujnik fotooptyczny – 9. Sygnały z wszystkich czujników kierowane są do urządzenia sterującego – 11, w skład którego wchodzi układ kontroli i sterowania oparty o sterownik swobodnie programowalny, jak również terminal operatorski (Rys. 5). Terminal posiada funkcje sterownicze oraz umożliwia rejestrację i obrazowanie wyników pomiarów w formie wykresów i tabel związanych z przemieszczeniem wału. Elementy pracują w sieci *Ethernet* [Kasprzyk, 2002].

Rys. 5. Widok terminalu sterowniczego [Cyprys i in., 2015]

Prostowanie wałów – podstawy teoretyczne

Prostowanie rury następuje metodą punktowego jej grzania i w miejscu maksymalnego wykrzywienia. W trakcie grzania strzałka ugięcia rośnie do pozycji f_1 (Rys. 6), a następnie po ostudzeniu rura zajmuje pozycję f_2 [*Rykaluk, 2006*]. Proces byłby zakończony, gdyby $f_2 = 0$. Dotychczasowe poszukiwanie tego momentu odbywało się na wyczucie operatora. Często rura była wielokrotnie nagrzewana i chłodzona. Planuje się więc teoretyczne i doświadczalne znalezienie takich relacji pomiędzy f_0 i f_1 , aby osiągnąć $f_2 = 0$. str. 96

Rys. 6. Deformacja rury zależna od jej nagrzewania

Rozważana jest rura o długości L podgrzana palnikiem do temperatury T (Rys. 7).

Rys. 7. Idea prostowania rury metodą grzania

W miejscu grzania palnikiem temperatura rury osiąga swą maksymalną wartość (punkt O), natomiast w punkcie A' temperatura wynosi 0°C. Otrzymuje się zatem okrąg temperaturowy (Rys. 8), którego średnicę można określić np. za pomocą kamery termowizyjnej (Rys. 9).

Rys. 8. Okrąg temperaturowy: A'O – znany promień R' po podgrzaniu, AO – nieznany (urojony) promień R przed podgrzaniem

Rys. 9. Rozkład temperatur podczas punktowego grzania rury

Należy zauważyć, że wydłużenie rury po podgrzaniu to nie jest okrąg temperaturowy 2*R*', lecz jest to różnica $A'B' - AB = 2\Delta l$, stąd

 $\Delta l = R' - R \tag{1}$ Można zatem napisać:

$$R + \alpha R \wedge T = R' \tag{2}$$

Wzór (1) byłby słuszny, gdyby temperatura wzdłuż promienia była jednakowa. Tymczasem zmienia się ona zgodnie z rozkładem temperatur przedstawionym na rys. 10.

Rys.10. Rozkład temperatury wzdłuż promienia R'=A'O

Odcinek *R*' zostaje podzielony na *n* równych części (w tym przykładzie n = 5) i oblicza się poszczególne temperatury $T_1, T_2,...T_n$ z proporcji trójkąta przedstawionego na rys. 10:

$$T_1 = \frac{T}{n}; \ T_2 = \frac{2T}{n}; \ T_3 = \frac{3T}{n}; \ T_4 = \frac{4T}{n}; \ T_5 = \frac{5T}{n}$$
 (3)
dla $n = 5, \ T_5 = T$, co jest zgodne z rys. 10.

Wydłużenia wybranych odcinków można obliczyć z następujących zależności:

Przedział 1

$$\left(\frac{l}{n}\right) = \frac{l}{n} + \frac{l}{n}\alpha \ t_1 = \frac{l}{n}\left(1 + \alpha \frac{t}{n}\right)$$
(4)

Przedział 2

$$\left(\frac{l}{n}\right) = \frac{l}{n} + \frac{l}{n}\alpha\left(\frac{2T}{n} - \frac{T}{n}\right) = \frac{l}{n} + \frac{l}{n}\alpha\frac{T}{n} = \frac{l}{n}\left(1 + \alpha\frac{T}{n}\right)$$
(5)

Przedział 4

$$\left(\frac{l}{n}\right) = \frac{l}{n} + \frac{l}{n}\alpha\left(\frac{4T}{n} - \frac{3T}{n}\right) = \frac{l}{n} + \frac{l}{n}\alpha\frac{T}{n} = \frac{l}{n}\left(1 + \alpha\frac{T}{n}\right)$$
(6)

Przedział 5

$$\left(\frac{l}{n}\right) = \frac{l}{n} + \frac{l}{n}\alpha\left(\frac{5T}{n} - \frac{4T}{n}\right) = \frac{l}{n} + \frac{l}{n}\alpha\frac{T}{n} = \frac{l}{n}\left(1 + \alpha\frac{T}{n}\right)$$
(7)

Jak widać wydłużenia we wszystkich przedziałach są takie same, zatem całkowite wydłużenie *R*' wynosi:

$$R' = n \left[\frac{l}{n} \left(1 + \alpha \frac{T}{n} \right) \right] = l \left(1 + \alpha \frac{T}{n} \right)$$
(8)

Przez l oznaczono zgodnie ze wzorem (2) R

$$R = \frac{R'}{1 + \alpha \frac{T}{n}}$$
(9)

Zgodnie z zależnością (1) wydłużenie Δl ma postać

$$\Delta l = R' - R = R' - \frac{R'}{1 + \alpha \frac{T}{n}} = R' \left(1 - \frac{1}{1 + \alpha \frac{T}{n}} \right)$$
(10)

R' do tego wzoru wyznacza się z pola temperatur.

Na rys. 11 przedstawiono zależność między wydłużeniem rury a kątem jej ugięcia.

Rys. 11. Zależność między wydłużeniem rury a kątem jej ugięcia

Korzystając z rys. 11 oblicza się kąt ugięcia rury za pomocą zależności trygonometrycznej:

$$\alpha = \operatorname{arctg} \frac{2\Delta l}{D} \tag{11}$$

Na podstawie obliczonego kąta ugięcia rury można wyznaczyć f_1 (Rys. 6). W następnym kroku należałoby doświadczalnie oszacować wpływ skurczu materiałowego na parametr f_2 .

Wnioski

Wykonane stanowisko umożliwia prostowanie wałów wielkogabarytowych o różnych średnicach i długościach.

Brak dokładnej wiedzy dotyczącej zagadnień skurczu materiałowego po podgrzaniu do wysokich temperatur i studzeniu uniemożliwia wyprostowanie rury za pomocą jednej operacji.

Autorzy poprzez liczne doświadczenia pragną znaleźć zależności umożliwiające optymalizację procesu prostowania.

LITERATURA

Cyprys P., Holka H., Jarzyna T., (2015). Prostowanie technologiczne wielkogabarytowych wałów w przemyśle papierniczym. *Logistyka*, 4, 2830-2834

Borowiecki S. (1980). Maszyny papiernicze. WSiP, Warszawa

- Kasprzyk J., (2002). Programowanie sterowników przemysłowych. WNT, Warszawa
- Rykaluk K. (2006). Konstrukcje stalowe. Podstawy i elementy. DWE, Wrocław