PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of sulphonamides decomposition efficiency in ozonation and enzymatic oxidation processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Porównanie efektywności rozkładu sulfonamidów w procesach ozonowania i utleniania enzymatycznego
Języki publikacji
EN
Abstrakty
EN
Sulphonamides (SAs) are one of the most frequently detected anthropogenic micropollutants in the aquatic environment and their presence in it may pose a threat to living organisms. The aim of the study was to determine susceptibility of selected sulphonamides, i.e. sulfadiazine (SDZ) and sulfamethazine (SMZ), to degradation in the ozonation process and in enzymatic oxidation by unspecific peroxygenase extracted from Agrocybe aegerita mushroom (AaeUPO). Moreover, the acute toxicity of the aqueous solution of the selected sulphonamides (SMZ and SDZ) before and after mentioned treatment processes were studied on the freshwater crustacean Daphnia magna. Initial concentrations were equal to 2×10-5 M for sulfadiazine and 1.8×10-5 M for sulfamethazine. The percentage of transformation for the O3 process was at the level 95% for both SDZ and SMZ (after 10 s of the process), whilst enzymatic oxidation of SDZ and SMZ by AaeUPO caused transformation efficiencies at the levels of 97% and 94% (after 1 minute of the process), respectively. The second order rate constants of selected sulfonamides with molecular ozone and fungal peroxidase were also determined in the research. EC50 (median effective concentration) values from toxicity test on D. magna were found in the range from 14.6% to 37.2%, depending on the type of the process. The conducted oxidation processes were efficient in degradation of selected sulphonamides. The toxicity of the mixtures before and after treatment was comparable and did not change significantly. The research have shown that biological processes are not always safer for living organisms compared to the chemical processes.
PL
Sulfonamidy są jednymi z najczęściej wykrywanych mikrozanieczyszczeń antropogenicznych w środowisku wodnym, a ich obecność w nim może stanowić zagrożenie dla organizmów żywych. Celem badań było określenie podatności wybranych sulfonamidów, tj. sulfadiazyny i sulfametazyny na degradację w procesie ozonowania i utleniania enzymatycznego przez nieswoistą peroksygenazę ekstrahowaną z grzyba Agrocybe aegerita (AaeUPO). Ponadto badano toksyczność ostrą wodnego roztworu wybranych sulfonamidów przed i po wspomnianych procesach na słodkowodnym skorupiaku Daphnia magna. Początkowe stężenia wynosiły odpowiednio: 2×10-5 M (sulfadiazyna) i 1,8×10-5 M (sulfametazyna). Procent transformacji dla procesu O3 kształtował się na poziomie 95%, zarówno dla sulfadiazyny, jak i sulfametazyny, natomiast enzymatyczne utlenianie przez AaeUPO spowodowało odpowiednio transformacje badanych leków na poziomie 97% (sulfadiazyna) i 94% (sulfametazyna). W badaniach wyznaczono drugorzędowe stałe szybkości reakcji badanych sulfonamidów z ozonem cząsteczkowym i peroksydazą grzybową. Wartości EC50 z badań ekotoksyczności na D. magna wahały się od 14,6% do 37,2%, w zależności od rodzaju procesu. Wybrane do badań procesy utleniania okazały się być skuteczne w degradacji (transformacji) badanych sulfonamidów. Toksyczność mieszanin przed i po procesach była porównywalna, i nie zmieniała się znacząco, jednak to mieszaniny przed i po procesach enzymatycznej oksydacji charakteryzowały się wyższą toksycznością w porównaniu do mieszanin przed i po procesie ozonowania. Badania wykazały, że procesy biologiczne nie zawsze są bezpieczniejsze dla organizmów żywych w porównaniu z procesami chemicznymi.
Rocznik
Strony
10--18
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
  • EkoNorm Sp. z o.o., Katowice, Poland
autor
  • The Silesian University of Technology, Gliwice, Poland
  • Technische Universität Dresden, Germany
  • School of Life Sciences, Heriot-Watt University, Edinburgh, United Kingdom
  • Technische Universität Dresden, Germany
Bibliografia
  • 1. Anh, D.H., Ullrich, R., Benndorf, D., Svatos, A., Muck, A. & Hofrichter, M. (2007). Thcoprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation, Appl Environ Microbiol, 73, 17, pp. 5477-5485, DOI: 10.1128/AEM.00026-07.
  • 2. Anskjær, G.G., Rendal, C. & Kusk, K.O. (2013). Effect of pH on the toxcity and bioconcentration of sulfadiazine on Daphnia magna, Chemosphere, 91, pp. 1183-1188, DOI: 10.1016/j.chemosphere.2013.01.029.
  • 3. Aracagök, D., Göker, H. & Cihangir, N. (2018): Biodegradation of diclofenac with fungal strains, Archives of Environmental Protection, 44 (1), pp. 55-62, DOI: 10.24425/118181.
  • 4. Bader, H., Hoigné, J. (1982). Determination of ozone by the indigo method: a submitted standard method, Ozone: Sci. Eng, 4, pp. 169-176, DOI: 10.1080/01919518208550955.
  • 5. Bertanza, G., Pedrazzani, R., Grande, M.D., Papa, M., Zambarda, V., Montani, C., Steimberg, N., Mazzoleni, G. & Lorenzo, D.D. (2011): Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure, Water Res, 45(8), pp. 2473-2484, DOI: 10.1016/j.watres.2011.01.026.
  • 6. Bílková, Z., Malá, J. & Hrich, K. (2019). Fate and behaviour of veterinary sulphonamides under denitrifying conditions, Science of The Total Environment, 695, pp. 133824, DOI: 10.1016/j.scitotenv.2019.133824.
  • 7. Bourgin, M., Beck, B., Boehler, M., Borowska, E., Fleiner, J., Salhi, E., Teichler, R., von Gunten, U., Siegrist, H. & McArdell, C. (2018). Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products, Water Res, 129, pp. 486-498, DOI: 10.1016/j.watres.2017.10.036.
  • 8. Bourgin. M., Borowska. E., Helbing. J., Hollender.J., Kaiser. H.-P., Kienle. C., McArdell. C.S., Simon. E. & von Gunten. U. (2017). Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process Comparison of sulphonamides decomposition efficiency in ozonation and enzymatic oxidation processes 17 O3/H2O2: Kinetics of micropollutants abatement, transformation product and bromate formation in a surface water, Water Res, 122, pp 234-245, DOI: 10.1016/j.watres.2017.05.018.
  • 9. Cruz-Moratóa. C., Lucas. D., Llorca. M., Rodriguez-Mozaz. S., Gorga. M., Petrovic. M., Barceló. D., Vicenta. T., Sarràa, M. & Marco-Urrea, E. (2014). Hospital wastewater treatment by fungal bioreactor: Removal efficiency for pharmaceuticals and endocrine disruptor compounds, Science of The Total Environment, 493, pp. 365-376, DOI: 10.1016/j.scitotenv.2014.05.117.
  • 10. Dalla Bona, M., Di Leva, V. & De Liguoro, M. (2014). The sensitivity of Daphnia magna and Daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures, Chemosphere, 115, pp. 67-74, DOI: 10.1016/j.chemosphere.2014.02.003.
  • 11. De Liguoroa, M., Fioretto, B., Poltronieri, C. & Gallina, G. (2009). The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim, Chemosphere, 75 (11), pp. 1519-1524, DOI: 10.1016/j.chemosphere.2009.02.002.
  • 12. Fang, X., Wu, S., Wu, Y., Yang, W., Lia, Y., He, J., Hong, P., Nie, M., Xie, C., Wu, Z., Zang, K., Kong, L. & Liu, J. (2020). High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: Dynamics, thermodynamics, and mechanisms, Applied Surface Science, 518, pp. 146226, DOI: 10.1016/j.apsusc.2020.146226.
  • 13. Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M. & Korzeniewska, E. (2020). Antimicrobial pharmaceuticals in the aquatic environment - occurrence and environmental implications, European Journal of Pharmacology, 866, pp. 172813, DOI: 10.1016/j.ejphar.2019.172813.
  • 14. Fletcher, S. (2015). Understanding the contribution of environmental factors in the spread of antimicrobial resistance, Environ. Health Prevent. Med., 20, pp. 243-252, DOI: 10.1007/s12199-015-0468-0.
  • 15. Garoma, T., Umamaheshwar, S.K. & Mumper, A. (2010). Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation, Chemosphere, 79, pp. 814-820, DOI: 10.1016/j.chemosphere.2010.02.060.
  • 16. Hernandez, A. & Ruiz, M.T. (1998). An EXCEL template for calculation of enzyme kinetic parameters by non-linear regression, Bioinformatics, 14, pp. 227-28, DOI: 10.1093/bioinformatics/14.2.227.
  • 17. Hester, R.E. & Harrison, R.M. (2015). Pharmaceuticals in the Environment, Issues in Environmental Science and Technology. Royal Society of Chemistry Publishing, DOI: doi.org/10.1039/9781782622345.
  • 18. Hofrichter, M., Ullrich, R., Pecyna, M.J., Liers, C. & Lundell, T. (2010). New and classic families of secreted fungal peroxidases, Appl Microbiol Biotechol, 87, pp. 871-897, DOI: 10.1007/s00253-010-2633-0.
  • 19. Huber, M., Göbel, A., Joss, A., Hermann, N., Löffler, D., McArdel, C.S., Siegrist, H., Ried, A., Ternes, T.A. & von Gunten, U. (2005). Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study, Environmental Science and Technology, 39 (11), pp. 4290-4299, DOI: 10.1021/es048396s.
  • 20. Kinne, M., Poraj-Kobielska, M., Aranda, E., Ullrich, R., Hammel, K.E., Scheibner, K. & Hofrichter, M. (2009). Regioselective preparation of 5-hydroxypropranolol and 4’-hydroxydiclofenac with a fungal peroxygenase, Bioorganic & Medicinal Chemistry Letters, 9 (11), pp. 3085-7, DOI: 10.1016/j.bmcl.2009.04.015.
  • 21. Kümmerer, K. (2010). Pharmaceuticals in the environment, Annual Review of Environment and Resources, 35, pp. 57-75, DOI: 10.1146/annurev-environ-052809-161223.
  • 22. Lee, C.O., Howe, K.J. & Thomson, B.M. (2012). Ozone and biofiltration as an alternative to reverse osomosis for removing PPCPs and micropollutants from treated wastewater, Water Research, 46, pp. 1005-1014, DOI: 10.1016/j.watres.2011.11.069.
  • 23. Lemańska-Malinowska, N. & Bjerkelund, V.A. (2014). Removal of selected sulphonamides during the ozonation process in the presence and absence of bicarbonates, The Globaqua-Cytothreat-Endetech-Scarce Workshop, Barcelona, Spain, 2014.
  • 24. Lemańska-Malinowska, N., Felis, E. & Surmacz-Górska, J. (2013). Photochemical degradation of sulfadiazine, Archives of Environmental Protection, 39 (3), pp. 79-91, DOI: 10.2478/aep-2013-0027.
  • 25. Loos, R., Marinov, D., Sanseverino, I., Napierska, D. & Lettieri, T. (2018). Review of the 1stWatch List under the Water Framework Directive and recommendations for the 2nd Watch List, Publications Office of the European Union, Luxembourg, DOI: 1 0.2760/614367.
  • 26. Nanaboina, V. & Korshin, G. V. (2010). Evolution of absorbance spectra of ozonated wastewater and its relationship with the degradation of trace-level organic species, Environ Sci Technol, 44, pp. 6130-6137, DOI: doi.org/10.1021/es1005175.
  • 27. OECD, 2004. Test No. 202: Daphnia sp. Acute Immobilisation Test OECD Guidelines for the Testing of Chemicals, Section 2 Effects on Biotic Systems 202.
  • 28. Paździor, K., Bilińska, L. & Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment, Chemical Engineering Journal, 376, pp. 120597, DOI: 10.1016/j.cej.2018.12.057.
  • 29. Pecyna, M.J. (2010). Fungal peroxygenases and methods of application, United States, Patent publication: US 2010/0279366 A1, Pub. Date: 04.11.
  • 30. Pelalak, R., Alizadeh, R., Ghareshabani, E. & Heidari, Z. (2020). Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study, Science of the Total Environment, 734, pp. 139446, DOI: 10.1016/j.scitotenv.2020.139446.
  • 31. Poraj-Kobielska, M., Kinne, M., Ullrich, R., Scheibner K., Kayser, G., Hammel, K.E. & Hofrichter, M. (2011). Preparation of human drug metabolites using fungal peroxygenases, Biochemical Pharmacology, 82(7), pp. 789-789, DOI: 10.1016/j.bcp.2011.06.020.
  • 32. Rakness, K., Gordon, G., Langlais, B., Masschelein, W., Matsumoto, N., Richard, Y., Robson, M. & Somiya, I. (1996). Guideline for measurements of ozone concentration in the process gas from an ozone generator, Ozone Sci Eng, 18, pp. 209-229, DOI: 10.1080/01919519608547327.
  • 33. Reungoat, J., Escher, B.I., Macova, M., Argaud, F.X., Gerjak, W. & Keller, J. (2012). Ozonation and biological activated carbon filtration of wastewater treatment plant effluents, Water Research, 46, pp. 863-872, DOI: 10.1016/j.watres.2011.11.064.
  • 34. Rodríguez-Rodríguez, C.E., García-Galán, J., Blánquez, P., Díaz-Cruz, M.S., Barceló, D., Caminal, G. & Vicent, T. (2012). Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole, Journal of Hazardous Materials, 213-214, pp. 347-354, DOI: 10.1016/j.jhazmat.2012.02.008.
  • 35. Santos, L.M, Araújo, A.N., Fachini, A., Pena, A., Delerue-Matos, C. & Montenegro, M. (2010). Ecotoxicological aspects related to the presence of pharmaceutical in the aquatic environment, Journal of Hazardous Materials, 175, pp. 45-95, DOI: 10.1016/j.jhazmat.2009.10.100.
  • 36. Schwarz, J., Aust, M.-O. & Thiele-Bruhn, S. (2010). Metabolites from fungal laccase-catalysed transformation of sulfonamides, Chemosphere, 81 (11), pp. 1469-1476, DOI: 10.1016/j.chemosphere.2010.08.053.
  • 37. Tahergorabi, M., Esrafili, A., Kermani, M., Gholami, M., Farzadkia, M. (2019). Degradation of four antibiotics from aqueous solution by ozonation: intermediates identification and reaction pathways, Desalination and Water Treatment, 139, pp. 277-287, DOI: 10.5004/dwt.2019.23307.
  • 38. Ullrich, R., Nüske, J., Scheibner, K., Spantzel, J. & Hofrichter, M. (2004). Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes, Appl Environ Microbiol, 70, pp. 4575-4581, DOI: 10.1128/AEM.70.8.4575-4581.2004.
  • 39. von Sonntag, C. & von Gunten, U. (2012). Chemistry of ozone in water and wastewater treatment: from basic principles to applications. IWA Publishing.
  • 40. Voulvoulis, N. (2014). The need for catchment management of pharmaceuticals: the role of STPs, The Globaqua-Cytothreat-Endetech-Scarce Workshop, Barcelona, Spain, 2014.
  • 41. Yang, Y., Ok, Y.S., Kim, K.-H., Kwon, E.E. & Tsang, Y.F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review, Science of The Total Environment, 596-597, pp. 303-320.
  • 42. Zhang, C., Wang, L., Gao, X. & He, X. (2016): Antibiotics in WWTP discharge into the Chaobai River, Beijing, Archives of Environmental Protection, 42(4), pp. 48-57, DOI: 10.1515/aep-2016-0036.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e9b7324-d407-4944-8129-84991e3978c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.