PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the effect of dynamic flexural load on the electrical resistivity of concrete

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrical resistivity is an important property for the structure concrete of metro track. In this work, the effect of dynamic flexural load on the electrical resistivity of concrete was investigated. Results show that the electrical resistivity of concrete first rapidly decreased and then slowly decreased with loading cycles; The higher the stress level and loading frequency, the greater the attenuation of concrete resistivity, the maximum value reached 33%. Acoustic emission test showed that the electrical resistivity is related to the damage of concrete. According to the theory of concrete fatigue damage, a new model was proposed to characterize the relationship between the dynamic damage of concrete and the electrical resistivity, R2 > 0.98. This work provides insight into development of the theory of electrical conductivity in concrete, and novel strategy for the dynamic damage monitoring of concrete.
Rocznik
Strony
art. no. e176, 2023
Opis fizyczny
Bibliogr. 34 poz., fot., rys., wykr.
Twórcy
autor
  • Department of Civil Engineering, Central South University, Changsha 410075, China
autor
  • Department of Civil Engineering, Central South University, Changsha 410075, China
autor
  • Department of Civil Engineering, Central South University, Changsha 410075, China
  • Department of Civil Engineering, Central South University, Changsha 410075, China
  • Department of Civil Engineering, Central South University, Changsha 410075, China
autor
  • Department of Civil Engineering, Central South University, Changsha 410075, China
Bibliografia
  • 1. Han BM, Chen JH, Yang YJ. Statistical analysis of urban rail transit operation in the world in 2021: a review. Urban Rapid Rail Transit. 2022;35:5–11 (In Chinese).
  • 2. Alamuti MM, Nouri H, Jamali S. Effects of earthing systems on stray current for corrosion and safety behaviour in practical metro systems. IET Electr Syst Transp. 2011;1(2):69–79. https://doi.org/ 10.1049/iet-est.2010.0029.
  • 3. Wei X, Li Z. Study on hydration of Portland cement with fly ash using electrical measurement. Mater Struct. 2005;38(3):411–7. https://doi.org/10.1007/bf02479309.
  • 4. Li Z, Xiao L, Wei X. Determination of concrete setting time using electrical resistivity measurement. J Mater Civ Eng. 2007;19(5):423–7. https:// doi. org/ 10. 1061/ (asce) 0899- 1561(2007)19:5(423).
  • 5. Zhang J, Qin L, Li Z. Hydration monitoring of cement-based mate- rials with resistivity and ultrasonic methods. Mater Struct Constr. 2009;42(1):15–24. https://doi.org/10.1617/s11527-008-9363-0.
  • 6. R. J. Kessler, R. G. Powers, and M. A. Paredes, “Resistivity meas- urements of water saturated concrete as an indicator of permeability,” in NACE - International Corrosion Conference Series, Apr. 2005, vol. 2005-April.
  • 7. Azarsa P, Gupta R. Electrical resistivity of concrete for durability evaluation: a review. Adv Mater Sci Eng. 2017. https://doi.org/10. 1155/2017/8453095.
  • 8. Rajabipour F, Weiss J. Electrical conductivity of drying cement paste. Mater Struct Constr. 2007;40(10):1143–60. https://doi.org/ 10.1617/s11527-006-9211-z.
  • 9. Zeng X, et al. Electrical resistivity and capillary absorption in mortar with styrene-acrylic emulsion and air-entrained agent: improvement and correlation with pore structure. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.119287.
  • 10. Liang K, et al. Investigation of the capillary rise in cement-based materials by using electrical resistivity measurement. Constr Build Mater. 2018;173:811–9. https:// doi. org/ 10. 1016/j. conbu ildmat.2018.02.155.
  • 11. Tibbetts CM, Watts BE, Ferraro CC, Huber ED. Improving the utility of MIP analysis for cementitious systems through Gaussian process regression modeling to predict electrical resistivity. Cem Concr Compos. 2021. https:// doi. org/ 10. 1016/j. cemco ncomp. 2020.103870.
  • 12. Liang K, Zeng X, Zhou X, Qu F, Wang P. A new model for the electrical conductivity of cement-based material by considering pore size distribution. Mag Concr Res. 2017;69(20):1067–78. https://doi.org/10.1680/jmacr.16.00535.
  • 13. Li Q, Xu S, Zeng Q. The effect of water saturation degree on the electrical properties of cement-based porous material. Cem Concr Compos. 2016;70:35–47. https://doi.org/10.1016/j.cemconcomp. 2016.03.008.
  • 14. Zeng X, et al. Study on damage of concrete under uniaxial com- pression based on electrical resistivity method. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.119270.
  • 15. Yang Z, Weiss WJ, Olek J. Water transport in concrete damaged by tensile loading and freeze-thaw cycling. J Mater Civ Eng. 2006;18(3):424–34. https:// doi. org/ 10. 1061/ (asce) 0899- 1561(2006)18:3(424).
  • 16. Lee MK, Barr BIG. An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cem Concr Compos. 2004;26(4):299–305. https:// doi. org/ 10. 1016/ S0958- 9465(02) 00139-7.
  • 17. Alliche A. Damage model for fatigue loading of concrete. Int J Fatigue. 2004;26(9):915–21. https://doi.org/10.1016/j.ijfatigue. 2004.02.006.
  • 18. Qu S, Yang J, Zhu S, Zhai W, Kouroussis G, Zhang Q. Experi- mental study on ground vibration induced by double-line subway trains and road traffic. Transp Geotech. 2021. https://doi.org/10. 1016/j.trgeo.2021.100564.
  • 19. Qian W, et al. Evaluation of structural fatigue properties of metro tunnel by model test under dynamic load of high-speed railway. Tunn Undergr Sp Technol. 2019. https://doi.org/10.1016/j.tust. 2019.103099.
  • 20. Li N, Long G, Fu Q, Ma C, Ma K, Xie Y. Effects of freeze and cyclic load on impact resistance of filling layer self-compacting concrete (FLSCC). KSCE J Civ Eng. 2019;23(7):2908–18. https:// doi.org/10.1007/s12205-019-1715-5.
  • 21. Xiang Y, Xie Y, Long G, He J. Residual expansion deformation of high-speed railway steam-cured concrete: mechanism, modeling, and measurement. Arch Civ Mech Eng. 2021. https://doi.org/10. 1007/s43452-021-00281-9.
  • 22. Castro J, Bentz D, Weiss J. Effect of sample conditioning on the water absorption of concrete. Cem Concr Compos. 2011;33(8):805–13. https://doi.org/10.1016/j.cemconcomp.2011. 05.007.
  • 23. Li W, Sun W, Jiang J. Damage of concrete experiencing flexural fatigue load and closed freeze/thaw cycles simultaneously. Constr Build Mater. 2011;25(5):2604–10. https://doi.org/10.1016/j.conbu ildmat.2010.12.007.
  • 24. Hsu TTC. Fatigue and microcracking of concrete. Matériaux Con- str. 1984;17(1):51–4. https://doi.org/10.1007/BF02474056.
  • 25. Horii H, Shin HC, Pallewatta TM. Mechanism of fatigue crack growth in concrete. Cem Concr Compos. 1992;14(2):83–9. https:// doi.org/10.1016/0958-9465(92)90002-D.
  • 26. Qiao Y, Sun W, Jiang J. Damage process of concrete subjected to coupling fatigue load and freeze/thaw cycles. Constr Build Mater. 2015;93:806–11. https://doi.org/10.1016/j.conbuildmat.2015.05. 087.
  • 27. Kujawski D, Ellyin F. A cumulative damage theory for fatigue crack initiation and propagation. Int J Fatigue. 1984;6(2):83–8. https://doi.org/10.1016/0142-1123(84)90017-3.
  • 28. Carpinteri A. Energy dissipation in R.C. Beams under cyclic loadings. Eng Fract Mech. 1991;39(2):177–84. https://doi.org/ 10.1016/0013-7944(91)90033-W.
  • 29. Cao S, Yang R, Su C, Dai F, Liu X, Jiang X. Damage mechanism of slab track under the coupling effects of train load and water. Eng Fract Mech. 2016;163:160–75. https://doi.org/10.1016/j.engfr acmech.2016.07.005.
  • 30. Wu S, Chen X, Zhou J. Influence of strain rate and water content on mechanical behavior of dam concrete. Constr Build Mater. 2012;36:448–57. https://doi.org/10.1016/j.conbuildmat.2012.06. 046.
  • 31. Kurda R, de Brito J, Silvestre JD. Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cem Concr Compos. 2019;95:169–82. https://doi.org/10. 1016/j.cemconcomp.2018.10.004.
  • 32. Berthaud Y. Damage measurements in concrete via an ultrasonic technique part II modeling. Cem Concr Res. 1991;21(2–3):219– 28. https://doi.org/10.1016/0008-8846(91)90002-Y.
  • 33. Shokouhi P, Zoëga A, Wiggenhauser H, Fischer G. Surface wave velocity-stress relationship in uniaxially loaded concrete. ACI Mater J. 2012;109(2):141–8. https://doi.org/10.14359/51683700.
  • 34. “Effect_of_mineral_admixtures_on_the_corr.pdf.” Accessed: 07 Nov 2022. [Online]. Available: https://scholar.google.com.hk/ schol ar? hl= zh- CN& as_ sdt=0% 2C5&q= Effect+ of+ Miner al+ Admixtures+on+Fatigue+Behavior+of+Concrete+and+Mecha nism&btnG=.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e97750f-bc66-4ad9-865a-382bfc65b673
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.