PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Mathematical modelling of stress-strain state of steel-concrete beams with combined reinforcemenent

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most of the modern computer software for the building structures` calculation is based on mathematical dependencies which make it possible to analyse rather complex stress-strain state of structures subjected to loading. As a rule, the calculation is based on the finite element method and is reduced to the calculation of deformations arising in structures due to the action of external forces with the use of real strain diagrams of materials, σ-ε diagrams for concrete and reinforcement. Modern normative regulations for reinforced concrete structures` calculation are also based on the deformation model using material deformation diagrams, which are as close to the real ones, as possible. Therefore, this study was aimed to investigate in more detail the stress-strain state and the physical essence of the processes occurring in reinforced concrete structures with combined reinforcement according to mathematical approaches and regulations of DBN B.2.6-98:2009 and DSTU B. In 2.6-156:2010. Namely, in the research is analysed the combined reinforcement of S245 steel tapes and A1000 rebar, which is used in the production of reinforced concrete elements. The results of mathematical modelling were compared with the calculation results, according to DBN B.2.6-98: 2009 and DSTU B. B 2.6-156:2010, as well as with field experimental data. Therefore, the conclusion could be made, whether it is possible to use this technique with sufficient accuracy to calculate reinforced concrete structures with combined reinforcement.
Rocznik
Strony
108--115
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Faculty of Civil Engineering, 69 st. Dabrowskiego, 42-201 Czestochowa, Poland
autor
  • Lviv Polytechnic National University, Department of Building Constructions and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, Department of Highways and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, Department of Building Constructions and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
Bibliografia
  • 1. Azizov, T., Kochkarev, D., Galinska, T., Melnyk, O., 2020. Calculation of Composite Bending Elements. Lecture Notes in Civil Engineering, 181, 25-33. DOI: 10.1007/978-3-030-85043-2_3
  • 2. Azizov, T., Melnik, O., Myza, O., 2019. Strength and deformation of combined beams with side reinforced plates. Materials Science Forum, 968, 234-239. DOI: 10.4028/www.scientific.net/MSF.968.234
  • 3. Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021. Corrosion fatigue damages of rebars under loading in time. Materials, 14(12), 3416. DOI: 10.3390/ma14123416.
  • 4. Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021. Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646. DOI: 10.1016/j.cscm.2021.e00646.
  • 5. Blikharskyy, Y., Selejdak, J., Kopiika, N., Vashkevych, R., 2021. Study of Concrete under Combined Action of Aggressive Environment and Long-Term Loading. Materials, 14(21), 6612. DOI: 10.3390/ma14216612.
  • 6. Blikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., Blikharskyy, Z., 2021. Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. In IOP Conference Series: Materials Science and Engineeringю 1021 (1), 012012. DOI: 10.1088/1757-899X/1021/1/012012.
  • 7. Blikharskyy, Z., 2019. Research into glue materials for repairing the cross-section of RC beams. Budownictwo o zoptymalizowanym potencjale energetycznym, 8(2), 63-68. DOI: 10.17512/bozpe.2019.2.07
  • 8. Blikharskyy, Z., Vegera, P., Vashkevych, R., Shnal, T., 2018. Fracture toughness of RC beams on the shear, strengthening by FRCM system. MATEC web of conferences, 183, 02009. DOI: 10.1051/matec-conf/201818302009
  • 9. Borysiuk, O., Ziatiuk, Y., 2020. Experimental Research Results of the Bearing Capacity of the Reinforced Concrete Beams Strengthened in the Compressed and Tensile Zones. Lecture Notes in Civil Engineering, 100, 63-70. DOI: 10.1007/978-3-030-57340-9_8
  • 10. Czajkowska, A., Raczkiewicz, W., Bacharz, M., Bacharz, K., 2020. Influence of maturing conditions of steel-fibre reinforced concrete on its selected parameters. Budownictwo o zoptymalizowanym potencjale energetycznym, 9(1), 47–54. DOI: 10.17512/bozpe.2020.1.05
  • 11. Federowicz, K., Techman, M., Sanytsky, M., Sikora, P., 2021. Modification of lightweight aggregate concretes with silica nanoparticles. A review. Materials, 14(15), 4242. DOI: 10.3390/ma14154242834786734361436
  • 12. Ilnytskyy, B., Bobalo, T., Kramarchuk, A., 2020. Bearing Capacity of Stone Beam Reinforced by GFRP. Lecture Notes in Civil Engineering, 100, 42. DOI: 10.1007/978-3-030-57340-9_6
  • 13. Karpiuk, V., Somina, Y., Karpiuk, F., Karpiuk, I., 2021. Peculiar aspects of cracking in prestressed reinforced concrete T-beams. Acta Polytechnica, 61(5), 633-643. DOI: 10.14311/AP.2021.61.0633
  • 14. Khmil, R.Y., Tytarenko, R.Y., Blikharskyy, Y.Z., Vegera, P.I., 2021. Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP Conference Series: Materials Science and Engineering, Vol. 1021(1), 012014. DOI: 10.1088/1757-899X/1021/1/012014
  • 15. Khmil, R., Tytarenko, R., Blikharskyy, Y., Vegera, P., 2020. The Probabilistic Calculation Model of RC Beams, Strengthened by RC Jacket. Lecture Notes in Civil Engineering, 100, 182-191 DOI: 10.1007/978-3-030-57340-9_23
  • 16. Kos, Z., Klymenko, Y., Karpiuk, I., Grynyova, I., 2022. Bearing Capacity near Support Areas of Continuous Reinforced Concrete Beams and High Grillages. Applied Sciences, 12(2), 685. DOI: 10.3390/app12020685
  • 17. Koteš, P., Vičan, J., 2021. Influence of Fatigue Crack Formation and Propagation on Reliability of Steel Members. Applied Sciences, 11(23), 11562. DOI: 10.3390/app112311562
  • 18. Koteš, P., Vavruš, M., Moravčík, M., 2021. Diagnostics and Evaluation of Bridge Structures on Cogwheel Railway. Lecture Notes in Civil Engineering, 200, 93-101. DOI: 10.1007/978-3-030-91877-4_11
  • 19. Lobodanov, М., Vegera, P., Blikharskyy, Z., 2019. Influence analysis of the main types of defects and damages on bearing capacity in reinforced concrete elements and their research methods. Production Engineering Archives, 22, 24-29. DOI: 10.30657/pea.2019.22.05
  • 20. Malíková L., Miarka P., Šimonová H., Kucharczyková B., 2020. Deflection of an eccentric crack under mixed-mode conditions in an SCB specimen. Construction of Optimized Energy Potential (CoOEP), 9(2), 79-87. DOI: 10.17512/bozpe.2020.2.09
  • 21. Mao, Y., Shao, C., Shang, P., Li, Q., He, X., Wu, C., 2019. Preparation of high strength PET/PE composites reinforced with continued long glass fibers. Materials Research Express, 6(4), 045303. DOI: 10.1088/2053-1591/aace48
  • 22. Panchenko, S., Fomin, O., Vatulia, G., Ustenko, O., Lovska, A., 2021. Determining the load on the long-based structure of the platform car with elastic elements in longitudinal beams. Eastern-European Journal of Enterprise Technologies, 1(7), 109. DOI: 10.15587/1729-4061.2021.224638
  • 23. Pavlikov, A., Pinchuk, N., Kachan, T., 2020. Strength of Masonry Indirectly Reinforced by Expanded Steel Sheets. Lecture Notes in Civil Engineering, 181, 303-311. DOI: 10.1007/978-3-030-85043-2_29
  • 24. Song, L., Liu, J., Cui, C., Liu, R., Yu, Z., 2022. Multi-factor sensitivity analysis of chloride ingression: A case study for Hangzhou Bay Bridge. Construction and Building Materials, 330, 127089. DOI: 10.1016/j.conbuildmat.2022.127089
  • 25. Vavruš, M., Bujňák, J., Koteš, P., 2019. Experimental verification of real behavior of bridge structures using proof-load tests. Pollack Periodica, 14(1), 75-84. DOI: 10.1556/606.2019.14.1.8
  • 26. Vegera, P., Vashkevych, R., Blikharskyy, Y., Khmil, R., 2021. Development methodology of determinating residual carrying capacity of reinforced concrete beams with damages tensile reinforcement which occurred during loading. Eastern-European Journal of Enterprise Technologies, 4(7), 112. DOI: 10.15587/1729-4061.2021.237954
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e975f36-4280-49dc-ba84-a42cd456e044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.