Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let U+ be the set of all positive sequences. Then, given any sequence z = (zn)n≥1 ∈ U+ and any set E of complex sequences, we write Ez for the set of all sequences y = (yn)n≥1 such that y/z = (yn/zn)n≥1 ∈ E. We use the notation sz = (ℓ∞)z. In this paper, for given r, s≠ 0 and for every λ ∈ ℂ, we determine the set of all positive sequences x = (xn)n≥1 that satisfy the (SSIE) with an operator (c0)B(r,s)−λI ⊂ Ɛ + sx, where Ɛ ⊂ sθ for some θ ∈ U+ is a linear space of sequences, in each of the cases, (1) |λ - r| > |s|, or λ = r, (2) |λ - r| = |s| and (3) |λ - r| < |s| and λ ≠ r. These cases are associated with the continuous and residual spectra σc (B (r, s), c0) and σr (B (r, s), c0), of B (r, s) on c0, determined by Altay and Başar in [2]. We apply these results to the solvability of the (SSIE) (c0)B(r,s)−λI ⊂ s(c)R +sx for all λ ∈ ℂ and R > 0. Then we deal with the (SSIE) (c0)Δ−λI ⊂ bvp + sx and (c0)B(r,s)−λI ⊂ ERɑ + sx, for E = c0, c, or ℓ∞, where Rɑ, ɑ ∈ U+, is the Rhaly matrix. These results extend those stated in [21].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
61--75
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
Bibliografia
- [1] Al-Jarrah A.M., Malkowsky B., BK spaces, bases and linear operators, Rend. Circ. Mat. di Palermo, 52(2) (1998), 177-191.
- [2] Altay B., Başar F., On the fine spectrum of the generalized difference operator B (r, s) over the sequence spaces c0 and c, Int. J. Math. Math. Sci., 18(2005), 3005-3013.
- [3] Akhmedov A.M., Başar F., On the fine spectrum of the operator Δ over the sequence space bvp (1 ≤ p < ∞), Acta Math. Sin. Eng. Ser., 23(10) (2007), 1757-1768.
- [4] Akhmedov A.M., El-Shabrawy S.R., On the fine spectrum of the operator Δa,b over the sequence space c, Comp. Math. Appl., 61(10) (2011), 2994-3002.
- [5] Başar F., Altay B., On the space of sequences of p−bounded variation and related matrix mappings, Ukr. Math. J., 55(1) (2003), 135-147.
- [6] Başar F., Durna N., Yildirim M., Subdivisions of the spectra for difference operator over certain sequence spaces, Malays. J. Math. Sci., 6(2012), 151-165.
- [7] Bilgiç¸ H., Furkan H., On the fine spectrum of the generalized difference operator B (r, s) over the sequence spaces ℓp and bvp (1 < p < ∞), Nonlinear Analysis, 68(3) (2008), 499-506.
- [8] Farés A., de Malafosse B., Spectra of the operator of the first difference in sα, s0α, s(c)α and ℓp (α) (1 ≤ p < ∞) and application to matrix transformations, Demonstratio Math., 41(3) (2008), 661-676.
- [9] Farés A., Ayad A., de Malafosse B., Calculations on matrix transformations involving an infinite tridiagonal matrix, Axioms (2021), 10, 218. https://doi.org/10.3390/axioms10030218.
- [10] Furkan H., Bilgiç¸ H., Kayaduman K., On the fine spectrum of the generalized difference operator B (r, s) over the spaces ℓ1 and bv, Hokkaido Math. J., 35(2006), 897-908.
- [11] Furkan H., Bilgiç¸ H., Altay B., On the fine spectrum of the operator B (r, s, t) over c0 and c, Comput. Math. Appl., 53(6) (2007), 989-998.
- [12] Karaisa A., Fine spectra of upper triangular double-band matrices over the sequence space ℓp, (1 < p < ∞), Discrete Dyn. Nature Soc. 2012, Article ID 381069 (2012).
- [13] Kirişçi M., Başar F., Some new sequence spaces derived by the domain of generalized difference matrix, Comp. Math. Appl., 60(2010), 1299-1309.
- [14] Kreyszig E., Introductory functional analysis with applications, John Wiley and Sons Inc. New-York-Chichester-Brisbane-Toronto, 1978.
- [15] Maddox I.J., Infinite matrices of operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
- [16] Maddox I.J., On Kuttner’s theorem, J. London Math. Soc., 43(1968), 285-290.
- [17] de Malafosse B., On some Banach algebras and applications to the spectra of the operator B (r, s) mapping in new sequence spaces, Pure Appl. Math. Lett., 2(2014), 7-18.
- [18] de Malafosse, B., New results on the (SSIE) with an operator of the form FΔ ⊂ E + F`x involving the spaces of strongly summable and convergent sequences by the Cesàro method, Axioms, 10(3), 157 (2021), https://doi.org/10.3390/axioms10030157.
- [19] de Malafosse B., Malkowsky E., On the solvability of certain (SSIE) with operators of the form B (r, s), Math. J. Okayama. Univ., 56(2014), 179-198.
- [20] de Malafosse B., Malkowsky E., On the spectra of the operator operator B (r, s) mapping in (w∞ (λ))a and (w0 (λ))a where λ is a nondecreasing exponentially bounded sequence, Mat. Vesn., 72(1) (2020), 30-42.
- [21] de Malafosse B., Malkowsky E., Rakočević V., Operators between sequence spaces and applications, Springer Nature Singapore Pte Ltd., 2021.
- [22] Malkowsky E., Linear operators between some matrix domains, Rend. Del Circ. Mat. di Palermo, 68(2) (2002), 641-655.
- [23] Malkowsky E., Rakočević V., An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Matematički Institut SANU, 9(17) (2000), 143-243.
- [24] Rhaly, JR. H. C., Terrace Matrices, Bull. London Math. Soc., 21(4) (1989), 399-406.
- [25] Srivastava P.D., Kumar S., Fine spectrum of the generalized difference operator Δv on sequence space ℓ1, Thai J. Math., 8(2) (2010), 221-233.
- [26] Wilansky A., Summability through Functional Analysis, North-Holland Mathematics Studies, 85, 1984.
- [27] Yeşilkayagil M., Başar F., A survey for the spectrum of triangles over sequence spaces, Numer. Funct. Anal. Optim., 40(16) (2019), 1908-1917.
- [28] Yildirim M., On the spectrum and fine spectrum of the compact Rhaly operators, Indian J. pure Appl. Math., 34(2003), 1443-1452.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e8e6ad3-ffc0-4c51-91d3-9d2aad4c52af