PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pinning synchronization of two general complex networks with periodically intermittent control

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the method of periodically pinning intermittent control is introduced to solve the problem of outer synchronization between two complex networks. Based on the Lyapunov stability theory, differential inequality method and adaptive technique, some simple synchronous criteria have been derived analytically. At last, both the theoretical and numerical analysis illustrate the effectiveness of the proposed control methodology. This method not only reduces the conservatism of control gain but also saves the cost of production.These advantages make this method having a large application scope in the real production process.
Rocznik
Strony
497--512
Opis fizyczny
Bibliogr. 34 poz., rys., wykr., wzory
Twórcy
autor
  • Basic Experimental Center, Civil Aviation University of China, Tianjin, China, 300300
autor
  • School of Finance, Tianjin University of Finance \& Economics, China, 300222
autor
  • Civil Aviation ATM Research Institute, Civil Aviation University of China, Tianjin, China, 300300
autor
  • State Grid Fuxin Electric Power Supply Company, Fuxin, China, 123000
Bibliografia
  • [1] D. J. Watts and S. H. Strogatz: Collective dynamics of ‘small-world’ networks. Nature, 393(4), (1998) 440-442.
  • [2] M. Girvan and M. E. J. Newman: Community structure in social and biological networks. Proc. of the National Academy of Sciences USA, 99 (2002), 7821-7826.
  • [3] R. Albert, H. Jeong and A. L. Barabsi: Diameter of the world wide web. Nature, 401 (1999), 130-131.
  • [4] R. J. Williams and N. D. Martinez: Simple rules yield complex food webs. Nature, 404 (2000), 180-183.
  • [5] L. M. Pecora and T. L. Carrroll: Master stability functions for synchronized coupled systems. Physical Review Letters, 80(10), (1998), 2109-2112.
  • [6] X. F. Wang and G. R. Chen: Synchronization in small-world dynamical networks. Int. J. of Bifurcation and Chaos, 12(1), (2002), 187-192.
  • [7] J. P. Zhou, Z.Wang, Y. Y. Wang and Q.K. Kong: Synchronization in complex dynamical networks with interval time-varying coupling delays. Nonlinear Dynamics, 72 (2013), 377-388.
  • [8] X. F. Wang and G. R. Chen: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circurts and Systems, 49(1), (2002), 54-62.
  • [9] X. F. Wang: Complex networks: topology, dynamics and synchronization. Int. J. of Bifurcation and Chaos, 12(5), (2002), 885-916.
  • [10] D. W., Gong, H. G. Zhang, Z. S. Wang and B. N. Huang: Novel synchronization analysis for complex networks with hybrid coupling by handling multitude Kronecker product terms. Neurocomputing, 82 (2012), 14-20.
  • [11] H. Liu, J. Chen, J. A. Lu and M. Cao: Generalized synchronization in complex dynamical networks via adaptive couplings. Physica A, 389(8), (2010), 1759-1770.
  • [12] A. H. Hu, J. D. Cao, M. F. Hu and L. X. Guo: Cluster synchronization in directed networks of non-identical systems with noises via random pinning control. Physica A, 395 (2014), 537-548.
  • [13] H. G. Zhang, D. W. Gong, B. Chen and Z. W. Liu: Synchronization for coupled neural networks with interval delay: a novel augmented LKF method. IEEE Trans. on Neural Networks and Learning Systems, 24(1), (2013), 58-70.
  • [14] B. C. Li: Finite-time synchronization for complex dynamical networks with hybrid coupling and time-varying delay. Nonlinear Dynamics, 76 (2014), 603-1610.
  • [15] D. W. Gong, H. G. Zhang, Z. S. Wang and B. N. Huang: Pinning synchronization for a general complex networks with multiple time-varying coupling delays. Neural Processing Letters, 35(3), (2012), 221-231.
  • [16] C. P. Li, W. G. Sun and J. Kurths: Synchronization between two ccoupled complex networks. Physical Review E, 76 (2007), 046204.
  • [17] H. W.Tang, L.Chen, J. A.Lu and C. K.Tse: Adaptive synchronization between two complex networks with nonidentical topological structures. Physica A}, 387 (2008), 5623-5630.
  • [18] L. Lü, Y. S. Li, X. Fan and N. Lü: Outer synchronization between uncertain complex networks based on backstepping design. Nonlinear Dynamics, 73 (2013), 767-773.
  • [19] X. Q. Wu, W. X. Zheng and J. Zhou: Generalized outer synchronization between complex dynamical networks. Chaos, 19(1), (2009), 013109.
  • [20] C. P. Li, W. G. Sun and J. Kurths: Outer synchronization of coupled discrete-time networks. Chaos, 19(1), (2009), 013106.
  • [21] J. S. Wu and L. C. Jiao: Synchronization in complex dynamical networks with nonsymmetric coupling. Physica D, 237(19), (2008), 2487-2498.
  • [22] Q. J. Zhang, J. Luo and L. Wan: Parameter identification and synchronization of uncertain general complex networks via adaptive-impulsive control. Nonlinear Dynamics, 71 (2013), 353-359.
  • [23] J. Zhou, J. A. Lu and J. H. Lü: Pinning adaptive synchronization of a general complex dynamical networks. Automatica, 44(4), (2008), 996-1003.
  • [24] W. W. Yu and J. D. Cao: Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification. Physica A, 375 (2007), 467-482.
  • [25] J. Zhao, J. H. David and T. Liu: Synchronization of dynamical networks with nonidentical nodes: criteria and control. IEEE Trans. on Circuits and Systems-I, 58(3), (2011), 584-594.
  • [26] G. Hu and Z. Qu: Controlling spatiotemporal chaos in coupled map lattice systems. Physical Review Letters, 72(1), (1994), 68-71.
  • [27] C. X. Fan, G. P. Jiang and F. H. Jiang: Synchronization between two complex dynamical networks using scalar signals under pinning control. IEEE Trans. on Circuits and Systems-I, 57 (2011), 2991-2998.
  • [28] B. H. Wen, M. Zhao and F. Y. Meng: Pinning synchronization of the drive and response dynamical networks with lag. Archives of Control Sciences, 24(3), (2014), 257-269.
  • [29] M. Żochowski: Intermittent dynamical control. Physica D, 145 (2000), 181-190.
  • [30] N. Li, H. Y. Sun, X. Jing and Q. L. Zhang: IExponential synchronisation of united complex dynamical networks with multi-links via adaptive periodically intermittent control. IET Control Theory and Applications, 7(13), (2013), 1725-1736.
  • [31] W. G. Xia and J. D. Cao: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos, 19(1), (2009), 013120.
  • [32] Y. Liang and X. Y. Wang: Synchronization in complex networks with non-delay and delay couplings via intermittent control with two switched periods. Physica A, 395, (2014), 434-444
  • [33] X. W. Liu and T. P. Chen: Cluster synchronization in directed networks via intermittent pinning control. IEEE Trans. on Neural Networks, 22(7), (2011), 1009-1020.
  • [34] S. Boyed, L. E. Ghaoui and E. Feron, V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics (SIAM), 1994.
Uwagi
EN
This work is supported by the central Scientific Research funds in university 2000250517,3122014D031 and Scientific research allowance in Civil Aviation University of China 10400714
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e86a506-66ee-477b-8442-1e841d16abde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.