PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the Salinity Gradient on the Mollusc Fauna in Flooded Mine Subsidences (Karvina, Czech Republic)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ zróżnicowania zasolenia wód zbiorników w nieckach osiadania na faunę mięczaków (Karwina, Czechy)
Języki publikacji
EN
Abstrakty
EN
This paper presents the impact of salinisation on the aquatic mollusc fauna in flooded mine subsidences in the Karvina region (Czech Republic). The results of the previous research on salinity in flooded mine subsidences show that some of them contain a high content of dissolved inorganic substances (above 1000 mgl-1). These substances can affect the vegetation and animals occurring in the water and the surrounding area. The phylum of Mollusca was selected as a model group for the fieldwork as it includes species with the proven bioindication potential. The occurrence of aquatic mollusc species was studied at 10 sites. The sites were selected based on the content of dissolved substances (the salinity gradient from <500 to >1000 mgl-1).. A total of 12 aquatic mollusc species were found, including one species identified as a potential bioindicator of the negative effect of salinisation on aquatic biota. The analysis showed statistically significant positive correlations between the content of dissolved inorganic substances and the presence of alien species Potamopyrgus antipodarum (J.E. Gray, 1843). The gradient of salinity significantly affects the species composition of the mollusc fauna in flooded mine subsidences and may affect the biodiversity of this group.
PL
W artykule przedstawiono reakcję wodnych gatunków mięczaków (Mollusca), jako grupy modelowej, na zasolenie wód zbiorników powstałych w nieckach osiadania rejonu Karwiny (Czechy). Analizę występowania wodnych gatunków mięczaków przeprowadzono w obrębie 10 obiektów. Wody badanych zbiorników tworzyły gradient zasolenia w zakresie od <500 do >1000 mg·l-1. W ich obrębie stwierdzono występowanie łącznie 12 gatunków wodnych mięczaków, w tym jednego gatunku, który uznano za potencjalny indykator znacznego zasolenia zbiorników. Wyniki analizy statystycznej wykazały istotną pozytywną zależność między zawartością rozpuszczonych substancji nieorganicznych i występowaniem gatunku Potamopyrgus antipodarum (J.E. Gray, 1843). Wykazano, że gradient zasolenia w istotny sposób wpływa na skład gatunkowy fauny mięczaków, kształtujących się w zbiornikach w nieckach osiadania oraz mieć wpływa na bioróżnorodność tej grupy.
Rocznik
Strony
87--99
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
  • Institute of Environmental Engineering, Faculty of Mining and Geology, VŠB-Technical University of Ostrava, Czech Republic, 17.listopadu 15, 708 00, Ostrava
  • Central Mining Institute, Department of Water Protection,Poland, Plac Gwarków 1, 40-166, Katowice
autor
  • Department of Geobotany and Nature Protection, Faculty of Biology and Environmental Protection, Silesian University Poland, Jagiellońska 28, 40-032 Katowice
  • Institute of Environmental Engineering, Faculty of Mining and Geology, VŠB-Technical University of Ostrava, Czech Republic, 17.listopadu 15, 708 00, Ostrava
Bibliografia
  • [1] Adams, J. & Robin, H., (1988). The fauna of mining subsidence pools in Northumberland, Transactions of the Natural History Society of Northumberland, Durham, and Newcastle-upon-Tyne, 55, 28-38.
  • [2] Australian and New Zealand Environmental and Conservation Council (ANZECC) and Agricultural and Resource Management Council of Australia and New Zealand (ARMCANZ), (2000). National Water Quality Management Strategy, The Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Paper No. 4 - Volume 1 Chapter 3, 3.5-4. Canberra, Australia: Department of the Environment and Heritage.
  • [3] Beran, L. (1998). Vodní měkkýši ČR. 1. vydání, Metodika Českého svazu ochránců přírody č. 17, Vlašim: ZO ČSOP Vlašim, (pp. 113).
  • [4] Beran, L. (2002). Vodní měkkýši České republiky - rozšíření a jeho změny, stanoviště, šíření, ohrožení a ochrana, červený seznam. [Aquatic molluscs of the Czech Republic - distribution and its changes, habitats, dispersal, threat and protection, Red List], Sborník přírodovědného klubu v Uh. Hradišti, Supplementum 10, (pp. 258).
  • [5] Beran, L. (2010). Vodní měkkýši bývalého lomu Chabařovice v severních Čechách [Aquatic molluscs of the former quarry Chabařovice in Northern Bohemia (Czech Republic)], Malacologica Bohemoslovaca, 9, 26-32.
  • [6] Beran, L. (2011). Příspěvek k poznání vodních měkkýšů evropsky významné lokality Bystřice se zaměřením na populaci velevruba tupého (Unio crassus). [A contribution to the knowledge of aquatic molluscs of the Bystřice SCI focused on the population of Unio crassus], Malacologica Bohemoslovaca, 10, 10-17.
  • [7] Berezina, N.A. (2003). Tolerance of freshwater invertebrates to changes in water salinity, Rus J Ecol 34, 261-266.
  • [8] Connell, J.H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1309.
  • [9] Chełmicki, W. (2002). Woda zasoby, degradacja, ochrona. Wydawnictwo naukowe PWN. Warszawa 2002.
  • [10] Clark, T.M., Flis, B.J. & Remold, S.K. (2004). Differences in the effects of salinity on larval growth and developmental programs of a freshwater and a euryhaline mosquito species (Insecta: Diptera, Culcidae), The Journal of Experimental Biology, 207, 2289-2295.
  • [11] Dodson, S.I. (2001). Zooplankton communities of restored depressional wetlands in Wisconsin USA. Wetlands, 21, 292-300.
  • [12] Duncan, A. (1966). The oxygen consumption of Potamopyrgus jenkinsi (Prosobranchiata) in different temperatures and salinities, Verhandlungen Internacionale Vereiningung fűr Theoretische und Angewandte Limnologie, 16, 1739-1751.
  • [13] Dunlop, J., McGregor, G. & Horrigan, N. (2005). Potential impacts of salinity and turbidity in riverine ecosystems. National Action Plant for Salinity and Water Quality. WQ06 Technical Report. QNRM05523, ISBN 1741720788.
  • [14] Dunlop, J., Horrigan, N., McGregor, G., Kefford B.J., Choy, S. & Prasad, R. (2007). Effect of spatial variation on salinity tolerance of macroinvertebrates in Eastern Australia and implications for ecosystem protection trigger values, Environmental Pollution, DOI: 10.1016/j.envpol.2007.03.020.
  • [15] Hart, B.T., Bailey, P., Edwards, R., Hortle, K., James, K. & McMahon, A. (1991). A review of the salt sensitivity of the Australian freshwater biota, Hydrbiologia 210, 105-144.
  • [16] Horsák, M., Juřičková, L., Beran, L., Čejka, T. & Dvořák, L. (2010). Komentovaný seznam měkkýšů zjištěných ve volné přírodě České a Slovenské republiky. [Annotated list of mollusc species recorded outdoors in the Czech and Slovak Republics], Malacologica Bohemoslovaca, Suppl. 1: 1-37.
  • [17] IUCN. (2001). IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission. IUCN, Gland, Switzerland and Cambridge, UK.
  • [18] Jacobsen, R. & Forbes, V.E. (1997). Clonal variation in life - history trans and feeding rates in the gastropod, Potamopyrgus antipodarum: performance acsross salinity gradient. Functional Ecology, 11, 260-267.
  • [19] James, K.R., Cant, B. & Ryan., T. (2003). Response of freshwater biota to risk salinity levels and implications for saline water management: a review. Australian Journal of Botany, 51, 703-713.
  • [20] Jankowski, A.T. & Molenda, T. (2007). Antropogeniczne środowiska wodne na Górnym Śląsku cz.4. Środowiska powierzchniowe - zbiorniki zapadliskowe i w nieckach osiadań. Przyroda Górnego Śląska, 48, 10-11.
  • [21] Kefford, B.J., Papas, P.J. & Nugegoda, D. (2003). Relative salinity tolerance of macroinvertebrates from the Baron River, Victoria, Australia, Marine & Freshwater Research, 54, 755-765.
  • [22] Kefford, B.J. & Nugegoda, D. (2005). No evidence for a critical salinity threshold for growth and reproduction in the freshwater snail Physa acuta. Environmental Pollution, 134, 377-383.
  • [23] Kefford, B.J., Palmer, C.G. & Nugegoda, D. (2005). Relative salinity tolerance of freshwater macroinvertebrates from the south-east Eastern Cape, South Africa compared with the Baron Catchment, Victoria, Australia. Marine & Freshwater Research, 56, 163-171.
  • [24] Kefford, B.J., Marchant, R., Schafer, R.B., Matzeling, L., Dunlop, J.E., Choy, S.C. & Goonan, P. (2011). The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates. Environmental Pollution, 159, 302-310.
  • [25] Konečná, E. (2007). Eutrofizace poklesových kotlin. VŠB-Technická univerzita Ostrava. Disertační práce. Ostrava.
  • [26] Lisický, J.M. (1991). Mollusca Slovenska. Bratislava: Veda, 199 (pp. 1340).
  • [27] Lewin, I. & Smoliński, A. (2006). Rare and vulnerable species in the mollusc communities in the mining subsidence reservoirs of an industrial area (The Katowicka Upland, Upper Silesia, Southern Poland). Limnologica, 36, 181-191.
  • [28] Pawlowicz, R. (2008). Calculating the conductivity of natural waters, Limnology and Oceanography: Methods, 6, 489-501.
  • [29] Ložek, V. (1956). Klíč k určování československých měkkýšů - SAV. Bratislava (pp. 437).
  • [30] Ložek, V. (2005). Suchozemští měkkýši jako ukazatele biodiverzity. In Vačkář, D. (Ed.), Ukazatele změn biodiverzity. Praha: Academia (pp. 262-273).
  • [31] Marshall, N.A. & Bailey, P.C.E. (2004). Impact of secondary salinization on freshwater ecosystems: effect of constraining, experimental, short-term releases of saline wastewater on macroinvertebrates in lowland stream, Marine & Freshwater Research, 55, 509-523.
  • [32] Meglen, R.R. (1992). Examining large databases: A chemometric approac h using principal component analysis. Marine Chemistry, 39, 217-237.
  • [33] Muschal, M. (2006). Assessment of risk to aquatic biota from elevated salinity - A case study from the Hunter River, Australia Journal of Environmental Management, 79, 266-278. [PubMed]
  • [34] Nielsen, D.L, Brock, M.A., Rees, G.N. & Baldwin, D.S. (2003). Effects of increasing salinity on freshwater ecosystems in Australia, Australian Journal of Botany, 51, 6, 655-665.
  • [35] Pertile, E. (2007). Hydrochemie zvodnělých poklesových kotlin ve vymezeném území Karvinska. Vysoká škola báňská - Technická univerzita Ostrava. Hornicko-geologická fakulta. Disertační práce. Ostrava.
  • [36] Piscart, C., Moreteau, J.-C. & Beisel, J.-N. (2005). Biodiversity and Structure of macroinvertebrate communities along a small permanent salinity gradient, Muerthe River, France, Hydrobiologia, 551, 227-236.
  • [37] Piscart, C., Moreteau, J.-C. & Beisel, J.-N. (2006a). Salinization consequence in running waters: use of a sentinel substráte as a bioassessment method. Journal of the North American Benthological Society, 25, 477-486.
  • [38] Piscart, C., Moreteau, J.-C. & Beisel, J.-N. (2006b). Monitoring ganges in freshwater macroinvertebrate communities along a salinity gradient using artifi cial substrates. Environmental Monitoring and Assessment, 116, 529-542.
  • [39] Piscart, C., Kefford, B.J. & Beisel, J.N. (2011). Are tolerance of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? Limnologica, 41, 107-112.
  • [40] Peck, A.J. (1978). Salinization of non-irrigated soils and associated stress: a review. Australian Journal of Soil Research, 16, 157-168.
  • [41] Quitte, E. (1971). Klimatické oblasti Československa. Climatic regions of Czechoslovakia. Studia geographica, 16, 1-47.
  • [42] Stalmachová, B. (2001). Iniciace přírodních ekosystémů poddolované krajiny pro process obnovy území Karvinska. MŽP VaV/640/1/01. MS VŠB-TU, Ostrava.
  • [43] Raclavská, H. & Škrobánková, H. (2007). Salinita vod poklesových kotlin v oblasti OKR. In Recyklace odpadů XI. ISBN 978-80-248-1597-8 (pp. 151-155).
  • [44] Rzętała, M. (1998). Zróżnicowanie występowania sztucznych zbiorników wodnych na obszarze Wyżyny Katowickiej, Geographia. Studia et dissertationes, 22, 53-67. Prace Naukowe Uniwersytetu Śląskiego w Katowicach Nr 1723. Uniwersytet Śląski 1998.
  • [45] Schulz, C.-J. (1998). Desalinization of running waters. I. Effects of desalinization on the bacterio-and viroplankton on the running waters of a creek in Northern Thuringia (Germany), Limnologica, 28, 367-376.
  • [46] Stalmachová, B. et al. (2003). Strategie obnovy hornické krajiny. Technická univerzita Ostrava, Hornicko- -geologická fakulta. Ostrava.
  • [47] Strzelec, M. (1993). Ślimaki (Gastropoda) antropogenicznych środowisk wodnych Wyżyny Śląskiej. Prace naukowe Uniwersytetu Śląskiego Nr 1358, Katowice (pp. 104).
  • [48] Strzelec, M. & Serafiński, W. (2004). Biologia i ekologia ślimaków w zbiornikach antropogenicznych. Centrum dziedzictwa przyrody Górnego Śląska (pp. 90).
  • [49] Ter Braak, C.J.F. & Šmilauer, P. (2002). CANOCO Reference Manual and CanoDraw for Windows User´s Guide. Software for Canonical Community Ordination (vision 4.5). Biometris, Wageningen and České Budějovice.
  • [50] Williams, W.D., Taaffe, R.G. & Boulton, A.J. (1991). Longitudinal distribution of macroinvertebrates in two rivers subjekt to salinization, Hydrobiologia, 210, 151-160.
  • [51] Wood, W.E., (1924). Increase of salt in soil and stress following the destruction of the native vegetation, Journal of Royal Society of Western Australia, 10, 35-47.
  • [52] Zalizniak, L., Kefford, B.J., Nugegoda, D. (2009a). Effects of different ionic composition on surfoval and growth of Physa acuta, Aquatic Ecology, 43, 145-156.
  • [53] Zalizniak, L., Kefford, B.J. & Nugegoda, D. (2009b). Effects of pH on salinity tolerance of selected freshwater invertebrates, Aquatic Ecology, 43, 135-144.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e85fee3-3d8d-4fde-b971-04d1ed33fb94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.