
 

OPTIMIZING THE MODULE STRUCTURE OF 

THE PROGRAM ON THE STAGE OF ITS DESIGN   

Kazimierz Worwa  

Faculty of Cybernetics, Military Technical University, Warsaw, Poland,  

Email: kazimierz.worwa@wat.edu.pl  

 

Abstract     The paper proposes a formal method of determining the modular structure of the 

computer program by formulating and solution of the corresponding two-criterion 

optimization problem. A module strength coefficient and a module coupling coefficients 

were established as modularization criteria of the program. For the illustration of the 

considerations that have been discussed, a simple numerical example will be presented.  

 

Paper type: Research Paper 
 

Published online: 31 January 2018 

Vol. 8, No. 1, pp. 91–102 

DOI: 10.21008/j.2083-4950.2018.8.1.7 

 

ISSN 2083-4942 (Print) 

ISSN 2083-4950 (Online) 

© 2018 Poznan University of Technology. All rights reserved.   

 

Keywords: program design, program modular structure, program structure optimization 

 

 



92 K. Worwa  

1. INTRODUCTION  

Among all the stages of a complex computer program development process, the 

design stage is one of the most important due to the possibility of shaping its 

broadly understood usability. According to the so-called analytical design 

(Pressman, 2001) the essence of a program design stage is to design a modular 

structure of the program under construction, defining in particular its 

decomposition into component modules and their interrelations. Very important 

influence on the form of modular structure of the program have assumed criteria of 

its division into modules, further referred to as modularization criteria. 

Numerous modularization methods are used in practice, depending on the 

specificity and purpose of the programs being designed. Designing a program, like 

any design activity, is essentially about the invention or creative activity of the 

designer. Due to the fact that both realization of design works work and their 

results strongly depend on the designer's knowledge and experience (the so-called 

subjective conditioning of the design process), the stage of software design is 

hardly susceptible to formalization. It should be emphasized that the formalization 

of design work, such as the extensive use of mathematical methods for finding 

specific design solutions, could be the basis for undertaking work to reduce the role 

of the subjective factor in design work, for example through their partial 

automation. 

The paper presents an attempt to define the modular structure of a program by 

solving a suitably defined two-criterion optimization problem, using both 

maximization of the modular strength coefficient and minimization of the inter-

module coupling of the program as the modularization criteria. 

2. PROGRAM MODULARIZATION CRITERIA  

Designing the modular structure of the program is based on the specification of 

software requirements. For the purposes of further consideration, it is assumed that 

these specifications are expressed by a specially-designed decision table (so-called 

cause-effect table) describing in a precise and unambiguous way the program input 

and the actions that it performs. The method of constructing such a table is 

described in (Myers, 2012). In the cited papers, cause-effect tables are constructed 

for the purpose of designing a set of test cases, which is the basis for the testing 

phase. Cause-effect table describes the relationship between the so-called causes, 

that are the possible combinations of input data of the program and their effects, 

understood as actions taken by the program following occurrence of these cases. 



 Optimizing the module structure of the program on the stage of its design   93 

Let  } J ..., j, ..., 2, 1, { =J  be the set of numbers - resulting from the specification 

of requirements – possible combinations of causes and  } I ..., i, ..., 2, 1, { =I  – the set 

of numbers of their effects.  

With reference to the previously mentioned cause-effect table, the value I is the 

number of lines of the "effect" part of the table, and J denotes the number of their 

columns. 

In the remainder part of this article, the cause-and-effect table describing the 

specifications of the analized program will be represented by the matrix T, 

as follows: 

 

  
JIijt  = 


T ,          (1) 

 

where 






.0

,1

otherwise 

causes of ncombinatio th-j the of econsequenc a is efect th-i the if 
tij  

 

According to previous remarks, the particular effects represented in the ma-

trix T as "one" are understood as actions performed by the program following the 

occurrence of specific combinations of causes (input data). 

There are a number of mutually related modules (in the sense of sequence for 

example) in the program design process, which represent the programming 

implementation of these actions. The complexity and number of implemented 

actions determines the number and nature of reciprocal links of the specified 

modules. Let  }  M..., m, ..., 2, 1, { =M  denote the set of program module numbers, 

wherein the range of values that number M can take is as follows: 

 

 Im 1 , 

 

where M = 1 means no modularization (the so-called one-module program), while 

M = I is the maximum modularization that takes place when every program module 

implements exactly one action (function). 

Determining the number of modules M as well as their interrelationships is 

a fundamental difficulty in the process of designing the modular structure of the 

program. Using the matrix T, which is a representation of the cause-effect table of 

the designed program, the problem of determining the modular structure of the 

program can be reduced to the problem of determining the "allocation" of each 

action to particular modules, i.e. to determine the number of modules and actions 

that they will execute. The mentioned assignment, hereinafter referred to as the 

letter X, is defined as follows: 

 



94 K. Worwa  

  
MIimx  = X


,          (2) 

 

where 






.0

1

otherwise 

module, th-m theby  realized is action th-i  the fi 
xim  

 

Elements of the matrix X fulfill the following constraints: 

 

 I

M




i   x

m

im ,1 ,         (3) 

 

where equality in dependence (3) takes place in a situation in which every action 

(function) can be executed (implemented) by exactly one module. 

Assignment X assigns the division of the set of effect numbers I into subsets 

defined as follows: 

 

}x  iX imm 1:{)(  II . 

 

According to the above definition set MI m  Xm ),( , contains the numbers of 

these actions, which according to assignment X implements the m-th module. 

In cases where dependencies (3) are equations sets MI m  Xm ),( , are disjoint 

sets. 

The nature of the mutually relations between modules is determined by the 

interrelationships of the particular effects – in the sense of their temporal 

consequence – during the execution of the program. Mutual effect relationships 

will be characterized by functions J j  j , , defined as follows: 

 

J j 2I Ij :         (4) 

 

The value of the function for the i-th action is the set of numbers of those 

program actions that for the j-th combination of causes the program can execute 

next. For example, if },{)( lkij   then for the j-th combination of causes, after 

execution of the i-th action as the next one can be executed the k-th or l-th action. 

Designing a modular structure of a program involves determining the number of 

modules (by determining their "content", i.e. the actions that they will implement) 

and their interrelations. This structure – dependent on assignment X – will be 

characterized by the zero-one matrix Γ(X), defined as follows: 

 

 
MMmn XX


 )()(  ,        (5) 



 Optimizing the module structure of the program on the stage of its design   95 

where 















otherwise.

next, as executed be can module th-n the

 module th-m the execution after X sassignment to according if

 )X(mn

0

1

  

 

Using the knowledge of function J j  j , , quantities )X(mn , Mn  m, , can 

be defined as follows: 

 











   

,

,)(
)( )( )(

nm  for0 

nm  orfX 
X j Xh Xi

j
hi

mn m m

  
J I I


                    (6) 

 

and 

 



 


thetwise,o

hi  if
 X

j
j

hi
0

)(1
)(  

 

where operator   means logical summation of zero-one values, i.e. 

 





)()(

))(1(1)(
Xi

j
hi

Xi

j
hi

mm

XX
II

 . 

 

As mentioned earlier, modularization criteria have decisive importance in the 

process of designing the modular structure of the program. In particular, these 

criteria determine the form of the matrix X, describing the way of grouping actions 

into modules. From practical experience it follows that the modular structure of the 

program – among other things, to ensure its high reliability, ease of use and possible 

modifications – should be characterized by maximum simplicity. In this work, as 

a way to achieve this simplicity, simultaneously maximization of the modular 

strength coefficient and minimization of the inter-module coupling of the program is 

proposed. It should be stressed that this approach is consistent with  

the latest trends in modern software engineering (Pressman, 2001). 

The strength of a module is a measure of the nature and strength of inter-modu-

lar (internal) links between particular parts (elements) of a module. The inter-module 

coupling of the program is a measure of the number and types of inter-module 

(external) links, that is, between the highlighted program modules. The term "link" 

that is present in the above quoted definitions most commonly means the data 

coupling in practice (Myers, 1975). 



96 K. Worwa  

There are several types of module strength and module coupling categories in 

literature. For example, Myers (Myers, 1975) distinguishes 7 module strength 

categories (random, logical, classic, algorithmic, communication, information) and 

6 categories of module coupling (content, common, external, control, features, 

data). 

Let A} ..., a, ...,  ,2,1{A , B} ..., b, ...,  ,2,1{B  denote sets of module strength 

categories and module coupling respectively, and these numbers are assumed to be 

assigned to each category in such a way that the higher number corresponds to 

a higher strength or coupling category. 

The strength of the individual modules and the strength of their interconnections 

depends on the described by the matrix X, grouping method of actions realized by 

the program. 

Let A(X) denote the M-element vector, the components of which determine the 

strength of the individual program modules for the assignment X: 

 

MA   m  , (X) a   ), (X) a ..., (X), a ..., (X), a  (X), a ( = A(X) mMm21 . 

 

Respectively, let B (X) denote the matrix characterizing the strength of module 

coupling of the considered program for the assignment X: 

 

 
MMmn Xb= B(X)


)( , 

 

where )(Xbmn  is the number of the m-th and n-th module coupling categories, for 

the assignment X. 

The following two coefficients will be used as criteria for program 

modularization: 

 module strength coefficient of the program: 

 

)(min)(
1

Xa XF m
m M

            (7) 

 

 module coupling coefficient of the program: 

 

)(max)(
),(

2 Xb XF mn
nm MM

 .             (8) 

 

The value of the coefficients (7) and (8) in a particular way characterize the 

modular structure of the program, wherein the way of their construction shows that 

the module strength value is equal to the "weakest" number – among all component 

modules – the module strength category, while the module coupling value in the 



 Optimizing the module structure of the program on the stage of its design   97 

program is determined by the category number of the pair of modules "most 

strongly" interrelated. 

3. FORMULATING A PROBLEM TO OPTIMIZE THE 

ALLOCATION OF ACTIONS TO INDIVIDUAL PROGRAM 

MODULES  

Based on the introduced denotations and the assumed program modularization 

criteria it is possible to formulate the following two-criterion optimization problem 

of assignment of actions (functions) to particular modules of designed program can 

be formulated: 

 

),,( R F F X .        (9) 

 

where: 

X – a set of permissible solutions, defined as follows: 

 

  } (3)  and  (2)  sconstraint  satisfiesX : x = X {
MIim 

X ;   (10) 

 

F – two-criterion quality coefficient of the solution quality of the form 

 

), (X) F  (X), F ( = F(X) 21          (11) 

 

wherein the component criteria F1, F2 are defined by the relationships (7) and (8) 

respectively; 

R – the dominance relation in the set of values of the quality coefficient, defined as 

follows: 

 

}  y  y   ,y   y :  ) y  ,(y { = R 2
2

2
1

1
2

1
121  YY ,    (12) 

 

where Y is so called criteria space (Eschenauer, 1990), defined as follows: 

 

 } X  : ) (X) F  (X), F ( =y  { = F(X) = 21 XY  ,     (13) 

 

wherein 

 

)y  (yy  ),y  (y y 2
2

1
22

2
1

1
11 ,,  . 

 

https://www.google.pl/search?hl=pl&tbo=p&tbm=bks&q=inauthor:%22Hans+Eschenauer%22&source=gbs_metadata_r&cad=5


98 K. Worwa  

In the presented formulation of the problem of determining the optimal 

assignment, the dimension of the matrix X is set to MI  . In cases where the 

number of modules M can not be determined in advance M = I must be pre-

determined. After determining the solution X  of the task (9–13), the real number 

of modules of the program under consideration is obtained by summing these 

columns of the matrix X  in which there is at least one "1". 

According to previous remarks, the knowledge of the assignment X allows to 

define the modular structure of the designed program, while the assignment X , 

which is the solution of the two-criterion optimization problem (9–13), corresponds 

to the optimal modular structure in the sense of the assumed criteria. The solution 

of the optimization problem (9–13) can be determined in accordance with accepted 

methodology of solving multi-criterion optimization tasks (Eschenauer, 1990).  

4. NUMERICAL EXAMPLE  

For the illustration of the considerations that have been discussed, a simple 

numerical example will be presented. 

Let the sets I, J, the matrix T and the functions J j  j , , describing the 

specifications of the sample requirements of the designed program have the 

following form: 

}4,3,2,1{    I , 

}10,9,8,7,6,5,4,3,2,1{          J , 

 





















0010110011

0101010010

1100100100

1100011001

T , 

 

 }4{)3()1( 21  , 

 

   }4{)3(},4,3{)1( 55  , 

 

 }4{)2(6  , 

 

  }3,1{)2(9  , 

 

https://www.google.pl/search?hl=pl&tbo=p&tbm=bks&q=inauthor:%22Hans+Eschenauer%22&source=gbs_metadata_r&cad=5


 Optimizing the module structure of the program on the stage of its design   99 

 }1{)2(10  , 

 

wherein in description of the function J j  j , , the cases in which their values 

are empty are omitted. 

According to the accepted assumptions, the set of permissible solutions 

(assignments) X, defined by the relation (10), has the following form: 

 

}X  X  X  X  X 54321 ,,,,{X , 

 

where: 

 





















1

1

1

1

1X , 





















10

01

01

01

2X , 





















10

10

01

01

3X , 





















100

010

001

001

4X , 





















1000

0100

0010

0001

5X . 

 

Above permissible assignments correspond to the following five cases: 

1) all four program actions are implemented by one module (X1); 

2) one module executes three actions and the other one (X2); 

3) each of two modules executes two actions (X3); 

4) one module executes two actions, the other two - one action (X4); 

5) each module executes exactly one action (X5). 

Corresponding to the particular permissible assignments matrices 

5,1),(  i  X i  , describing the possible modular structures of the analyzed program 

are defined as follows: 

 

  }4,3,2,1{,0)( 1    )(X  1,  MX 11  I ; 

 

}2,1{},3,2,1{,
00

10
)()( 32  )(X   )(X  2,  MXX 3121 








 II ; 

 

}4{},3{},2,1{,

000

100

110

)( 4 

















 )(X  )(X   )(X  3,  MX 434241 III ; 

 



100 K. Worwa  

 {4}.)(X {3},)(X  )(X  )(X  4,         M          

  X

34333251 





















IIII },2{},1{

,

0000

1000

1101

1100

)( 5
 

 

Existing in analyzed sample program internal and external modular links will be 

evaluated based on the categories proposed by Myers (Myers, 1975), mentioned in 

part 2 i.e. 7} 6, 5, 4, 3, 2, 1,{A , 6} 5, 4, 3, 2, 1,{B . 

Let matrices 5  1,i XB  XA ii ),(),( , will be defined as follows: 

 

   0)(,1)( 11  XB  XA ; 

 

  









04

40
)(,21)( 22 XB  XA ; 

 

  









03

30
)(,33)( 33 XB  XA ; 

 

 


















042

403

230

)(,223)( 44 XB  XA ; 

 

 





















0412

4032

1305

2250

)(,2253)( 55 XB  XA . 

 

The values of the coefficients, assumed as component criteria for 

modularization, according to (7) – (8), have the form: 

 

 XF    XF    XF   XF    XF 2)(,2)(,3)(,1)(,1)( 5141312111  ; 

 XF    XF   XF  XF   XF 5)(,4)(,3)(,4)(,0)( 5242322212  . 

 



 Optimizing the module structure of the program on the stage of its design   101 

Accordingly, the criterion space Y, defined by the relation (13), forms the 

following set of pairs 5 1,i  ), )(X F  ),(X F ( = F(X) i2i1  : 

 

)}5,2(),4,2(),3,3(),4,1(),0,1{(              Y . 

 

According to the assumed dominance relation (12) there are two non-dominated 

(Eschenauer, 1990) elements in the set Y, as pairs (1, 0) and (3, 3). These elements 

are "better" – in the sense of the relation R – from the other elements of the set Y. 

These pairs of points are images – in the transformation F – of permissible 

solutions (assignments) X1 and X3 respectively. These solutions are therefore non-

dominated solutions of the two-criteria optimization problem (9)–(13). 

Solution X1 corresponds to such situation in which all actions are implemented 

by only one module. In this case strength module coefficient is low, but there are 

no external links between modules. In turn, the solution X3 corresponds to the case 

of a program in which two modules exist. In this situation value of the strength 

module coefficient is increased, but due to the appearance of certain links between 

modules, the value of the module coupling coefficient in the program it is getting 

worse. 

Statement that solutions X1 and X3 are non-dominated solutions of the two-

criteria optimization problem (9)–(13) means that, based on the assumed 

dominance relationship (12), it can not be decided which one of them is a better 

solution. In general, for example for purely practical reasons, aimed at eg. to 

reduce the complexity of the design-implementation task and improve the utility of 

the program, the designer decides probably to take the solution X3. 

5. CONCLUSION  

The proposed method of determining the modular structure of the computer 

program by determining the solution of the two-criteria optimization problem  

(9)–(13) requires representation of program requirements specification in the form 

of matrix (1) and (4). It should be emphasized that – besides the possibility of 

application of the described method – this form of description of program 

requirements specification also enables, among others effective verification of their 

completeness and consistency and application of modern test data design methods, 

e.g. cause-effect graph methods (Myers, 2012). 

The modular structure of the program, based on the solution of the formulated 

task of polyoptimization, is characterized by the maximum value of the module 

strength coefficient (7) and the minimum value of the module coupling (8). 

According to the latest software engineering trends, this is the optimal structure. 

https://www.google.pl/search?hl=pl&tbo=p&tbm=bks&q=inauthor:%22Hans+Eschenauer%22&source=gbs_metadata_r&cad=5


102 K. Worwa  

The practical application of the proposed method requires the determination of 

the solution of the two-criteria optimization problem (9)–(13), i.e. determining the 

dominant solution set, and in the absence of it – which is very common case – the 

non-dominated solutions set (Eschenauer, 1990). If this set contained more than 

one element, it must be chosen – as part of the design decisions – its "represen-

tative", e.g. by designation of so-called a compromise solution (Eschenauer, 1990). 

Consequently, the efficiency of the proposed method can be significantly increased 

by equipping the designer with the appropriate software to enable the computer 

aided determining the solution of the two-criteria optimization problem (9)–(13). 

In many practical situations, the set of permissible solutions X of optimization 

problem (9)–(13) will not be too numerous, i.e. the number of design variants will 

be relatively small. In such cases the solution of this problem can be determined by 

the full review method.  

REFERENCES  

Eschenauer H., Koski J. & Osyczka A. (1990), Multicriteria design optimization: 

procedures and applications. Springer-Verlag, Berlin. 

Myers J.G. (1975), Reliable Software Through Composite Design. New York: 

Petrocelli/Charter, 1975. 

Myers J.G. (2012), The art of software testing. Wiley, New York. 

Pressman R.S. (2001), Software engineering: a practical approach, Mc Grow-Hill, New 

York.  

BIOGRAPHICAL NOTES 

Kazimierz Worwa is an Associate Professor at the Cybernetics Faculty of Military 

Technical University in Warsaw. His research interests include software reliability 

modelling, software testing methods and software efficiency. He is an author and 

co-author of many scientific publications. His paper appear in numerous journals, 

e.g. Control and Cybernetics or Polish Journal of Environmental Studies and 

proceedings of international conferences, eg. Depcos-Relcomex, Information 

Management or System, Modelling and Control. 

 
 

https://www.google.pl/search?hl=pl&tbo=p&tbm=bks&q=inauthor:%22Hans+Eschenauer%22&source=gbs_metadata_r&cad=5
https://www.google.pl/search?hl=pl&tbo=p&tbm=bks&q=inauthor:%22Hans+Eschenauer%22&source=gbs_metadata_r&cad=5

