Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we use the fixed-point theorem in double cones to study the existence of multiple positive solutions for an impulsive first-order differential system with integral boundary conditions, when the nonlinearities change sign.
Wydawca
Czasopismo
Rocznik
Tom
Strony
193--207
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Department of Mathematics, Belhadj Bouchaib University, Center-BP 284-(46000), Ain Temouchent
- Laboratoire: Systèmes Dynamiques et Applications, University of Tlemcen, Algeria
autor
- Department of Mathematics, University of Tlemcen, Tlemcen, Algeria
Bibliografia
- [1] R. P. Agarwal and D. O’Regan, Infinite Interval Problems for Differential, Difference and Integral Equations, Kluwer Academic, Dordrecht, 2001.
- [2] D. Ba˘ınov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monogr. Surv. Pure Appl. Math. 66, Longman Scientific & Technical, Harlow, 1993.
- [3] D. D. Ba˘ınov and P. S. Simeonov, Systems with Impulse Effect. Stability, Theory and Applications, Ellis Horwood Ser. Math. Appl., Ellis Horwood, Chichester, 1989.
- [4] P. Chen and X. H. Tang, New existence and multiplicity of solutions for some Dirichlet problems with impulsive effects, Math. Comput. Modelling 55 (2012), no. 3-4, 723-739.
- [5] Y. Guo, Y. Zhu and J. Qiu, Multiple positive solutions for higher-order boundary value problems with sign changing nonlinearities, Appl. Math. Lett. 17 (2004), no. 3, 329-336.
- [6] J. Li, J. J. Nieto and J. Shen, Impulsive periodic boundary value problems of first-order differential equations, J. Math. Anal. Appl. 325 (2007), no. 1, 226-236.
- [7] J. Li and J. Shen, Positive solutions for first order difference equations with impulses, Int. J. Difference Equ. 1 (2006), no. 2, 225-239.
- [8] Y. Li and J. Shu, Multiple positive solutions for first-order impulsive integral boundary value problems on time scales, Bound. Value Probl. 2011 (2011), DOI 10.1186/1687-2770-2011-12.
- [9] Y. Liu, Positive solutions of periodic boundary value problems for nonlinear first-order impulsive differential equations, Nonlinear Anal. 70 (2009), no. 5, 2106-2122.
- [10] M. F. Mekhtiev, S. I. Dzhabrailov and Y. A. Sharifov, Second-order necessary optimality conditions in the classical sense in optimal control problems with three-point conditions, J. Automat. Inform. Sci. 42 (2010), no. 3, 47-57.
- [11] J. J. Nieto, Impulsive resonance periodic problems of first order, Appl. Math. Lett. 15 (2002), no. 4, 489-493.
- [12] J. J. Nieto, Periodic boundary value problems for first-order impulsive ordinary differential equations, Nonlinear Anal. 51 (2002), no. 7, 1223-1232.
- [13] Y. Tian and W. Ge, Existence and uniqueness results for nonlinear first-order three-point boundary value problems on time scales, Nonlinear Anal. 69 (2008), no. 9, 2833-2842.
- [14] Y. Tian, D. Ji and W. Ge, Existence and nonexistence results of impulsive first-order problem with integral boundary condition, Nonlinear Anal. 71 (2009), no. 3-4, 1250-1262.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e82d127-250a-4854-aea6-615115250072