PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Achieving high tensile properties and impact toughness in ultrahigh strength lean alloy steel by quenching and partitioning treatment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a desirable combination of strength, ductility, and toughness in low-carbon 30CrMnSiA steel is achieved by a hierarchical multiphase microstructural architecture subjected to one- and two-step quenching and partitioning (Q&P) processes. The microstructural constituents are studied by EBSD, x-ray diffraction, dilatometry, and TEM. Experimental results show that microstructural refinement occurs in the martensite and bainite at a lower quenching temperature, where more Bain groups form in one close-packed plane group. This causes random distribution between martensite and bainite blocks, enlarging the volume of high-angle grain boundaries. Such refined microstructure, particularly for the increased martensite with higher-density dislocations, causes an increased strength at a decreased quenching temperature. By comparison, increased quenching and partitioning temperature produces more stable film-like retained austenite (RA) and a low dislocation density in martensite/bainite (M/B); thus, it provides better deformation by accommodating with M/B laths and absorbing substantial energy due to the transformation-induced plasticity effect. The lower dislocation density, the higher volume fraction of RA, and the higher HAGBs improve the impact toughness and tensile properties of lean alloy steel through a moderate Q&P process.
Rocznik
Strony
art. no. e32, 2024
Opis fizyczny
Bibliogr. 52 poz., rys., wykr.
Twórcy
autor
  • School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
autor
  • School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
autor
  • School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
autor
  • Guizhou Special Equipment Inspection and Testing Institute, Guiyang 550025, China
autor
  • School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
autor
  • School of Mechanical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
autor
  • School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
autor
  • School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
Bibliografia
  • 1. Jabłońska MB. Effect of the conversion of the plastic deformation work to heat on the behaviour of TWIP steels: a review. Arch CivMech Eng. 2023;23:135.
  • 2. Kaczmarczyk J, Grajcar A, Kozłowska A, Banuelos JSC, OparaJ, Tatke N. Modelling of strain-induced martensite formation in advanced medium-Mn automotive sheet steel. Continuum MechTherm. 2023;35:1841–58.
  • 3. Jabłońska MB, Jasiak K, Kowalczyk K, Skwarski M, Rodak K,Gronostajski Z. The influence of the heat generation during deformation on the mechanical properties and microstructure of the selected TWIP steels. Int J Mater Form. 2023;16:30.
  • 4. Punyafu J, Hwang S, Ihara S, Saito H, Tsuji N, Murayama M.Microstructural factors dictating the initial plastic deformation behavior of an ultrafine-grained Fe–22Mn-0.6C TWIP steel.Mater Sci Eng A. 2023;862:144506.
  • 5. Sklate Boja MF, Giordana MF, Malarria J, Druker AV. Proce-dures for microstructurally conditioning an Fe-22Mn-0.6C-1.5AlTWIP steel for optimal mechanical behaviour. Mater Charact.2023;199:112790.
  • 6. Speer JG, Edmonds DV, Rizzo FC, Matlock DK. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation.Curr Opin Solid St M. 2004;8:219–37.
  • 7. Kong H, Chao Q, Cai MH, Pavlina EJ, Rolfe B, Hodgson PD, et al.One-step quenching and partitioning treatment of a commercial low silicon boron steel. Mater Sci Eng A. 2017;707:538–47.
  • 8. Seo EJ, Cho L, Estrin Y, De Cooman BC. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P)processed steel. Acta Mater. 2016;113:124–39.
  • 9. Hajy Akbary F, Sietsma J, Miyamoto G, Kamikawa N, Petrov RH, Furuhara T, et al. Analysis of the mechanical behavior of a0.3C–1.6Si-3.5Mn(wt%) quenching and partitioning steel. MaterSci Eng A. 2016;677:505–14.
  • 10. Huyghe P, Malet L, Caruso M, Georges C, Godet S. On the relationship between the multiphase microstructure and the mechanical properties of a 0.2C quenched and partitioned steel. Mater SciEng A. 2017;701:254–63.
  • 11. Yang K, Li Y, Hong Z, Du S, Ma T, Liu S, et al. The dominating role of austenite stability and martensite transformation mechanism on the toughness and ductile-to-brittle-transition temperature of a quenched and partitioned steel. Mater Sci Eng A.2021;820:141517.
  • 12. Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review. Mater Sci Eng A.2020;795:140023.
  • 13. Bai S-B, Chen Y-A, Sheng J, Li D-Z, Lu H-H, Bai P-K, et al. Acomprehensive overview of high strength and toughness steels for automobile based on QP process. J Mater Res Technol.2023;27:2216–36.
  • 14. Hillert M, Höglund L, Ågren J. Role of carbon and alloying elements in the formation of bainitic ferrite. Metall Mater Trans A.2004;35:3693–700.
  • 15. Peng F, Gu X, Xu Y. Tailoring austenite stability and mechanical behaviors of IQ&P steel via prior bainite formation. Mater SciEng A. 2021;822:141663.
  • 16. Long XY, Zhang FC, Kang J, Lv B, Shi XB. Low-temperature bainite in low-carbon steel. Mater Sci Eng A. 2014;594:344–51.
  • 17. Liu L, He BB, Cheng GJ, Yen HW, Huang MX. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite. Scripta Mater.2018;150:1–6.
  • 18. Zinsaz-Borujerdi A, Zarei-Hanzaki A, Abedi HR, Karam-Abian M, Ding H, Han D, et al. Room temperature mechanical properties and microstructure of a low alloyed TRIP-assisted steel subjected to one-step and two-step quenching and partitioning process.Mater Sci Eng A. 2018;725:341–9.
  • 19. Tan X, Xu Y, Yang X, Wu D. Microstructure–properties relationship in a one-step quenched and partitioned steel. Mater Sci EngA. 2014;589:101–11.
  • 20. Chen S, Hu J, Shan L, Wang C, Zhao X, Xu W. Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels. Mater Sci Eng A.2021;803:140706.
  • 21. Baek M-S, Kim K-S, Park T-W, Ham J, Lee K-A. Quantitative phase analysis of martensite-bainite steel using EBSD and its microstructure, tensile and high-cycle fatigue behaviors. MaterSci Eng A. 2020;785:139375.
  • 22. Chen K, Li H, Jiang Z, Liu F, Kang C, Ma X, et al. Multiphase microstructure formation and its effect on fracture behavior of medium carbon high silicon high strength steel. J Mater Sci Technol. 2021;72:81–92.
  • 23. Zhou S-B, Hu C-Y, Hu F, Cheng L, Isayev O, Yershov S, et al.Insight into the impact of microstructure on crack initiation/propagation behavior in carbide-free bainitic steel during tensile deformation. Mater Sci Eng A. 2022;846:143175.
  • 24. Yongzhe W, Jiajie H, Mingguang K, Yi Z, Junliang L, Ziwei L.Quantitative analysis of martensite and bainite microstructures using electron backscatter diffraction. Microsc Res Techniq.2016;79:814–9.
  • 25. Wang R, Jiang H, Shao W, Yang S, Sun X, Cao J, et al. Quenching induced residue stress in M50 steel ring: a FEM simulation. JMater Res Technol. 2023;24:5298–308.
  • 26. Kim SK, Kim YM, Lim YJ, Kim NJ. Relationship between yieldratio and the material constants of the Swift equation. Met MaterInt. 2006;12:131–5.
  • 27. Lambert-Perlade A, Gourgues AF, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel. Acta Mater. 2004;52:2337–48.
  • 28. Xiong XC, Chen B, Huang MX, Wang JF, Wang L. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Mater. 2013;68:321–4.
  • 29. Wang Y, Xu Y, Zhang T, Li J, Hou X, Sun W. Effects of quenching temperature on bainite transformation, retained austenite and mechanical properties of hot-galvanized Q&P steel. Mater Sci EngA. 2021;822:141643.
  • 30. Wang XL, Ma XP, Wang ZQ, Subramanian SV, Xie ZJ, ShangCJ, et al. Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel. Mater Charact. 2019;149:26–33.
  • 31. Miyamoto G, Takayama N, Furuhara T. Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis. Scripta Mater.2009;60:1113–6.
  • 32. Wu BB, Wang ZQ, Wang XL, Xu WS, Shang CJ, Misra RD.Toughening of martensite matrix in high strength low alloy steel:regulation of variant pairs. Mater Sci Eng A. 2019;759:430–6.
  • 33. Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel. Acta Mater. 2012;60:2387–96.
  • 34. Qian L, Li Z, Wang T, Li D, Zhang F, Meng J. Roles of pre-formed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbonbainitic steel. J Mater Sci Technol. 2022;96:69–84.
  • 35. Wu BB, Wang ZQ, Yu YS, Wang XL, Shang CJ, Misra RDK. Thermodynamic basis of twin-related variant pair in high strength low alloy steel. Scripta Mater. 2019;170:43–7.
  • 36. Wang XL, Wang ZQ, Ma XP, Subramanian SV, Xie ZJ, ShangCJ, et al. Analysis of impact toughness scatter in simulated coarse-grained HAZ of E550 grade offshore engineering steel from the aspect of crystallographic structure. Mater Charact.2018;140:312–9.
  • 37. Koistinen DP, Marburger RE. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 1959;7:59–60.
  • 38. De Knijf D, Petrov R, Föjer C, Kestens LAI. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel. Mater Sci Eng A. 2014;615:107–15.
  • 39. Lei L, Zhao Q, Zhu Q, Yang M, Yang W, Zeng W, et al. Twinning-induced high impact toughness of titanium alloy at cryogenic temperature. Mater Sci Eng A. 2022;860: 144258.
  • 40. Lei L, Zhu Q, Zhao Q, Yang M, Yang W, Zeng W, et al. Low-temperature impact toughness and deformation mechanism of CT20 titanium alloy. Mater Charact. 2023;195: 112504.
  • 41. Yang M, Lei L, Jiang Y, Xu F, Yin C. Simultaneously improving tensile properties and stress corrosion cracking resistance of 7075–T6 aluminum alloy by USRP treatment. Corros Sci.2023;218: 111211.
  • 42. Zou J, Liang Y, Jiang Y, Yin C, Huang C, Liu D, et al. Fretting fatigue mechanism of 40CrNiMoA steel subjected to the ultra-sonic surface rolling process: the role of the gradient structure.Inr J Fatigue. 2023;167: 107383.
  • 43. Zhao L, Qian L, Meng J, Zhou Q, Zhang F. Below-Ms aus-tempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels. Scripta Mater.2016;112:96–100.
  • 44. Ravi AM, Navarro-López A, Sietsma J, Santofimia MJ. Influence of martensite/austenite interfaces on bainite formation in low-alloy steels below Ms. Acta Mater. 2020;188:394–405.
  • 45. Huang C, Zou M, Qi L, Ojo OA, Wang Z. Effect of isothermal andpre-transformation temperatures on microstructure and properties of ultrafine bainitic steels. J Mater Res Technol. 2021;12:1080–90.
  • 46. Gao G, Zhang H, Gui X, Luo P, Tan Z, Bai B. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: the great potential of ultrafine filmy retained austenite. Acta Mater.2014;76:425–33.
  • 47. Paravicini Bagliani E, Santofimia MJ, Zhao L, Sietsma J, Anelli E.Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel. Mater SciEng A. 2013;559:486–95.
  • 48. Kumar S, Singh SB. Microstructure-property relationship in the quenching and partitioning (Q&P) steel. Mater Charact. 2023;196:112561.
  • 49. Long X, Yang R, Sun D, Liu W, Zhang Y, Zhang F, et al. Roles of cooling rate of undercooled austenite on isothermal transformation kinetics, microstructure, and impact toughness of bainitic steel. Mater Sci Eng A. 2023;870:144821.
  • 50. Huang X, Liu W, Huang Y, Chen H, Huang W. Effect of aquenching–long partitioning treatment on the microstructure and mechanical properties of a 0.2C% bainitic steel. J Mater ProcessTechnol. 2015;222:181–7.
  • 51. Xie C, Liu Z, He X, Wang X, Qiao S. Effect of martensite–austenite constituents on impact toughness of pre-tempered MnNiMo bainitic steel. Mater Charact. 2020;161: 110139.
  • 52. Furuhara T, Kawata H, Morito S, Maki T. Crystallography of upper bainite in Fe–Ni–C alloys. Mater Sci Eng A.2006;431:228–36.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e7875cc-7661-427b-87dd-0080a820b47e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.