PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of the Jackson and Hunt Theory for Rapid Eutectic Growth

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A development of the Jackson-Hunt’s theory is delivered. Contrary to Jackson-Hunt’s theory for ideally coupled growth the current description is dealing with the coupled eutectic growth which is more realistic than an ideal course of eutectic structure formation. Thus, the undercooling of every eutectic phase is not equal to each other. A new boundary condition is introduced to solve the diffusion equation. According to this condition, the eutectic concentration is always maintained at the triple point of the solid / liquid (s/l) interface. Therefore, the solution to diffusion equation is given separately for both lamellae. The mass balance is satisfied by the current solution. Both thermodynamic equilibrium and mechanical equilibrium are assumed to be situated at the triple point of the s/l interface, only. A protrusion of the leading phase over the wetting phase is defined mathematically due to the mass balance fulfilment. The current description is associated with the asymmetrical phase diagrams. Finally, the current description is applied to interpretation of the rapid eutectic growth. Therefore, Aziz’s concept for the changes of partition ratio versus growth rate is introduced into the description. As a result, the rapid formation of the eutectic structure is described by the oscillatory mode. Interpretation of the oscillatory mode of the eutectic structure formation is illustrated in the arbitrary eutectic phase diagram. The eutectic structure, obtained through the detonation gas spraying onto the steel substrate (rapid solidification) is delivered to illustrate the present description.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30 059 Kraków, Poland
Bibliografia
  • [1] A. Pawłowski, T. Czeppe, Ł. Major, C. Senderowski, Archives of Metallurgy and Materials 54, 783-788 (2009).
  • [2] C. Senderowski, A. Pawłowski, Z. Bojar, W. Wołczyński, M. Faryna, J. Morgiel, Ł. Major, Archives of Metallurgy and Materials 55, 373-381 (2010).
  • [3] C. Senderowski, Z. Bojar, W. Wołczyński, A. Pawłowski, Intermetallics 18, 1405-1409 (2010).
  • [4] A. Pawłowski, C. Senderowski, W. Wołczyński, J. Morgiel, Ł. Major, Archives of Metallurgy and Materials 56, 71-79 (2011).
  • [5] W. Wołczyński, C. Senderowski, J. Morgiel, G. Garzeł, Archives of Metallurgy and Materials 59, 209-217 (2014).
  • [6] C. Senderowski, Journal of Thermal Spray Technology 23, 1124-1134 (2014).
  • [7] K. A. Jackson, J. D. Hunt, Transactions of the Metallurgical Society of AIME 236, 1129-1142 (1966).
  • [8] J. D. Hunt, K. A. Jackson, Transactions of the Metallurgical Society of AIME 236, 843-852 (1966).
  • [9] D. T. J. Hurle, E. Jakeman, Journal of Crystal Growth 3/4, 574-582 (1968).
  • [10] J. E. Gruzleski, W. C. Winegard, Journal of the Institute of Metals 96, 301-303 (1968).
  • [11] G. Bolze, M. P. Puls, J. S. Kirkaldy, Acta Metallurgica 20, 73-85 (1972).
  • [12] S. Budurov, S. Yaneva, N. Stoichev, B. Phan Van, Kristall und Technik 10, 505-510 (1975).
  • [13] J. M. Quenisset, R. Naslain, Journal of Crystal Growth 54, 465-474 (1981).
  • [14] H. E. Cline, Metallurgical Transactions 15A, 1013-1017 (1984).
  • [15] A. Mortensen, Materials Science and Engineering A135, 1-11 (1991).
  • [16] G. Faivre, J. Mergy, Physical Review 46A, 963-972 (1992).
  • [17] K. Kassner C. Misbah, R. Baumann, Physical Review 51E, 2751-2754 (1995).
  • [18] M. Dong, J. Wanqi, Proceedings of the 4th Decennial International Conference on Solidification Processing, Sheffield 1997, 394-396.
  • [19] T. Himemiya, Science and Technology of Advanced Materials 2, 325-329 (2001).
  • [20] W. Wołczyński, International Journal of Thermodynamics 13, 35-42 (2010).
  • [21] D. J. Fisher, W. Kurz, Acta Metallurgica 28, 777-794 (1980).
  • [22] H. Jones, W. Kurz, Zeitschrift fur Metallkunde 72, 792-797 (1981).
  • [23] W. Kurz, R. Trivedi, Acta Metallurgica and Materialia 38, 1-17 (1990).
  • [24] P. Magnin, J. T. Mason, R. Trivedi, Acta Metallurgica and Materialia 39, 469-480 (1991).
  • [25] E. Guzik, D. Kopyciński, Metallurgical and Materials Transactions 37A, 3057-3067 (2006).
  • [26] P. Magnin, R. Trivedi, Acta Metallurgica and Materialia 39, 453-467 (1991).
  • [27] A. Ludwig, S. Leibbrandt, Materials Science and Engineering A 375-377, 540-546 (2004).
  • [28] W. Wołczyński, Defect and Diffusion Forum 272, 123-138 (2007).
  • [29] V. L. Davies, Journal of the Institute of Metals 93, 10-16 (1964-1965).
  • [30] M. J. Aziz, Journal of Applied Physics 53, 1158-1168 (1982).
  • [31] G. Boczkal, B. Mikułowski, W. Wołczyński, Materials Science Forum 649, 113-118 (2010).
  • [32] G. Lesoult, M. Turpin, Memoires Scientifiques de la Revue de Metallurgie, 66, 619-631 (1969).
  • [33] G. Boczkal, Arch. Met. Mater. 58, 1019-1022 (2013).
Uwagi
EN
1. The financial support was provided by the National Science Center (NCN), Poland under grant No. 2015/19/B/ST8/02000.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e731f59-0965-42a9-a0c8-193e9d7f1504
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.