PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coupled wave-equation and eddy-current model for modelling and measuring propagating stress-waves

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The coupling of the propagating stress wave with the eddy current model is presented. The applied stress produces magnetization in the sample that can be measured outside the sample by measuring the resulting magnetic flux density. The stress and flux density measurements are made on a mechanically excited steel bar. The problem is modelled with the finite element method for both the propagating wave and the eddy current. Three aspects are considered: eddy current model using magnetization from the measurements, coupled wave and eddy current models, and coupled different dimensions in the wave model. The measured stress can be reproduced from the measured flux density by modelling. The coupled models work both for stress and flux couplings as well as for the different dimensionality couplings.
Rocznik
Strony
215--226
Opis fizyczny
Bibliogr. 37 poz., rys., wykr., wz.
Twórcy
autor
  • Aalto University School of Electrical Engineering and Electronics Department of of Electrical Engineering and Automation P.O. Box 13000, 00076 Aalto, Finland
autor
  • Aalto University School of Electrical Engineering and Electronics Department of of Electrical Engineering and Automation P.O. Box 13000, 00076 Aalto, Finland
Bibliografia
  • [1] Bozorth R.M., Ferromagnetism. IEEE press, New York (1993).
  • [2] Hecker R., Undestanding of the problems in measuring the compressive stress-wave form in shafts in percussive machines (in Germ, Technisches Messen 1: 29-32 (1984).
  • [3] Hecker R., Schroder, P., Use of mehanical and electromechanical effects in measuring elastic waves in rods (in German), Technisches Messen 62: 432-439 (1995).
  • [4] Lee E.W., Magnetostriction and magnetomechanical effects. Reports on Progress in Physics 18(1): 184-229 (1955).
  • [5] Auld B.A., Nonlinear magnetoelastic interactions. Proceedings of the IEEE 53(10): 1517-1533 (1965).
  • [6] De Lacheisserie E.D.T., Magnetostriction: theory and applications of magnetoelasticity. CRC Press (1993).
  • [7] Dapino M.J., On magnetostrictive materials and their use in smart material transducers. Structural Engineering and Mechanics 17(3-4): 303-329 (2004).
  • [8] Lahteenkorva E.E., Materialsphysics (in Finnish). Suomen fyysikkoseura, Jyväskylä (1993).
  • [9] Dapino M.J., Magnetostrictive materials. Encyclopedia of Smart Materials 600-620 (2002).
  • [10] Comstock R.L., Magnetoelastic coupling constants of the ferrites and garnets. Proceedings of the IEEE 53(10): 1508-1517 (1965).
  • [11] Azoum K., 3D FEM of magnetostriction phenomena using coupled constitutive laws. International Journal of Applied Electromagnetics and Mechanics 19(1): 367-371 (2004).
  • [12] Calkins F.T., Smith R.C., Flatau A.B., Energy-based hysteresis model for magnetostrictive transducers. IEEE Transactions on Magnetics 36(2): 429-439 (2000).
  • [13] Dapino, M.J., Nonlinear and hysteretic magnetomechanical model for magnetostrictive transducers. PhD Thesis, Iowa State University (2000).
  • [14] Calkins F.T., Flatau A.B., Terfenol-D sensor design and optimization. Noise control Foundation (1997).
  • [15] Gersten F.W., Smith F.W., The physics and chemistry of materials. Wiley New York (2001).
  • [16] Bultea D.B., Langman R.A., Origins of the magnetomechanical effect. Journal of Magnetism and Magnetic Materials 251: 229-243 (2002).
  • [17] Calkins F.T. Flatau A.B., Experimental evidence for maximum efficiency operation of a magnetostrictive transducer. The Journal of the Acoustical Society of America 99: 2536 (1996).
  • [18] Calkins F.T., Flatau A.B., Transducer based measurements of Terfenol-D material properties. SPIE 1996 Proceedings on Smart Structures and Integrated Systems (1996).
  • [19] Koga F., Tadatsu T., Inoue J., Sasada I., A new type of current sensor based on inverse magnetostriction for large current detection. IEEE Transaction on Magnetics 45: 4506-4509 (2009).
  • [20] Jarosevic A., Magnetoelastic method of stress measurement in steel. Proc. of the NATO International Workshop on Smart Structures - Requirements and Potential Applications in Mechanical and Civil Engineering 107-114 (1998).
  • [21] Baudendistel T.A., Turner M.L., A novel inverse-magnetostrictive force sensor. IEEE Sensors Journal 7(2): 245-250 (2007).
  • [22] Garshelis I.J, Aleksonis J.A., Jones et al., Development of a Magnetoelastic Torque Transducer for Automotive Transmission Applications. Progress in Technology 79: 343-352 (2000).
  • [23] Chwastek K. Szczyglowski, J., An alternative method to estimate the parameters of Jiles-Atherton model. Journal of Magnetism and Magnetic Materials 314(1): 47-51 (2007).
  • [24] Besbes M., Ren Z., Razek A., A generalized finite element model of magnetostriction phenomena. IEEE Transactions on Magnetics 37(5): 3324-3328 (2001).
  • [25] Ghosh D.P., Gopalakrishnan S., Time domain structural health monitoring for composite laminate using magnetostrictive material with ANN modeling for nonlinear actuation properties. Second ISAMPE National Conference On Composites And Twelfth National Seminar On Aerospace Structures (2003).
  • [26] Ren Z., Ionescu B., Besbes M., Razek. A., Calculation of mechanical deformation of magnetic materials in electromagnetic devices. IEEE Transactions on Magnetics 31(3): 1873-1876 (1995).
  • [27] Kaltenbacher M., Landes R., Lerch R., An efficient calculation scheme for the numerical simulation of coupled magnetomechanical systems. IEEE Transactions on Magnetics 33(2 Part 2): 1646-1649 (1997).
  • [28] Yan R., Wang B., Yang Q. et al. A numerical model of displacement for giant magnetostrictive actuator. IEEE Transactions on Applied Superconductivity 14(2): 1914-1917 (2004).
  • [29] Galopin N., Mininger X., Frederic F., Daniel L., Finite element modeling of magnetoelectric sensors. IEEE Transactions on Magnetics 44(6): 834-837 (2008).
  • [30] Hecker R., Anwendung des magnetoelastischen Effekts zur Messung von Dehnwellen in Stabförmigen Körpern schlagender Machinen. Technisches Messen 6: 221-226 (1988).
  • [31] Eriksson J.T., Magnetostriction and its use in measuring propagating stress-wave (in Finnish). Tampere University of Technology (1986).
  • [32] Schaer R., Böni H., Fabo P., Jarosevic A., Method of and device for determining a time-dependent gradient of a shock wave in a ferromagnetic element subjected to a percussion load. US Patent 6, 356, 077 (2002).
  • [33] Timoshenko S., Goodier J.N., Theory of Elasticity. McGraw-Hill Book Company, Inc (1951).
  • [34] Comsol AB, Introduction to the acoustics module. Comsol Multi-physics Version 4.3 (2012).
  • [35] Kaltenbacher M., Meiler M., Ertl M., Physical modeling an numerical computation of magnetostriction. COMPEL 29(4): 819-832 (2009).
  • [36] Arkkio A., Analysis of induction motors based on the numerical solution of the magnetic field and circuit equations. PhD thesis, Helsinki University of Technology (1987).
  • [37] Belahcen A., Peussa T., Experimental and numerical investigations of the inverse magnetostrictionbased mechanical stress sensing. Proc COMPUMAG, Sydney, Australia (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e72f61c-1a08-40d0-912f-6292067790dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.