PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of bulge height in warm hydroforming of aluminum tubes using ductile fracture criteria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Warm hydroforming is used widely to increase the formability of aluminum and magnesium tubes. Prediction of forming limit is a vital problem in designing the warm hydroforming process of tubes. In this paper, bulge height of aluminum tubes AA6063 is predicted using ductile fracture criteria at high temperatures. Ductile fracture criteria were calibrated by performing several uniaxial tensile tests at different temperatures and strain rates. Fracture strain and work functions were obtained based on Zener–Holloman parameter. Free bulging process of tubes was simulated using finite element method and different loading curves were used to bulge the tubes. Prediction of ductile fracture was compared with the experimental results measured on a warm free bulging set-up. The comparison shows that Ayada ductile fracture criterion is able to predict the bulge height of aluminum tubes at high temperatures.
Rocznik
Strony
19--29
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Islamic Republic of Iran
  • Department of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Islamic Republic of Iran
  • Department of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Islamic Republic of Iran
  • Department of Mechanical Engineering, Faculty of Engineering, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran
Bibliografia
  • [1] M. Keigler, H. Bauer, D. Harrison, A.K.M. De Silva, Enhancing the formability of aluminium components via temperature controlled hydroforming, Journal of Materials Processing Technology 167 (2–3) (2005) 363–370.
  • [2] D. Li, A.K. Ghosh, Biaxial warm forming behavior of aluminum sheet alloys, Journal of Materials Processing Technology 145 (3) (2004) 281–293.
  • [3] B.J. Kim, C.J. Van Tyne, M.Y. Lee, Y.H. Moon, Finite element analysis and experimental confirmation of warm hydroforming process for aluminum alloy, Journal of Materials Processing Technology 187–188 (0) (2007) 296–299.
  • [4] H.K. Yi, E.J. Pavlina, C.J. Van Tyne, Y.H. Moon, Application of a combined heating system for the warm hydroforming of lightweight alloy tubes, Journal of Materials Processing Technology 203 (1–3) (2008) 532–536.
  • [5] Z. He, S. Yuan, G. Liu, J. Wu, W. Cha, Formability testing of AZ31B magnesium alloy tube at elevated temperature, Journal of Materials Processing Technology 210 (6–7) (2010) 877–884.
  • [6] S. Yuan, J. Qi, Z. He, An experimental investigation into the formability of hydroforming 5A02 Al-tubes at elevated temperature, Journal of Materials Processing Technology 177 (1–3) (2006) 680–683.
  • [7] S. Hashemi, H. Moslemi Naeini, G. Liaghat, R. Azizi Tafti, F. Rahmani, Numerical and experimental investigation of temperature effect on thickness distribution in warm hydroforming of aluminum tubes, Journal of Materials Engineering and Performance 22 (1) (2013) 57–63.
  • [8] A. Freudenthal, The Inelastic Behavior of Solids, Wiley, New York, 1950.
  • [9] M. Cockcroft, D. Latham, Ductility and the workability of metals, Journal of the Institute of Metals 96 (1) (1968) 33–39.
  • [10] S. Oh, C. Chen, S. Kobayashi, Ductile fracture in axisymmetric extrusion and drawing—Part 2: Workability in extrusion and drawing, Journal of Engineering for Industry 101 (1979) 36.
  • [11] P. Brozzo, B. Deluca, R. Rendina, A new method for the prediction of formability limits in metal sheets, in: Proc. 7th Biennal Conf., IDDR, 1972.
  • [12] M. Ayada, T. Higashino, K. Mori, Central bursting in extrusion of inhomogeneous materials, Advanced Technology of Plasticity 1 (1987) 553–558.
  • [13] J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids 17 (3) (1969) 201–217.
  • [14] W. Kim, H. Kim, W. Kim, S. Han, Temperature and strain rate effect incorporated failure criteria for sheet forming of magnesium alloys, Materials Science and Engineering: A 488 (1) (2008) 468–474.
  • [15] X.-m. Zhang, W.-d. Zeng, Y. Shu, Y.-g. Zhou, Y.-q. Zhao, H. Wu, H.-q. Yu, Fracture criterion for predicting surface cracking of Ti40 alloy in hot forming processes, Transactions of Nonferrous Metals Society of China 19 (2) (2009) 267–271.
  • [16] M. Oyane, T. Sato, K. Okimoto, S. Shima, Criteria for ductile fracture and their applications, Journal of Mechanical Working Technology 4 (1) (1980) 65–81.
  • [17] H.J. Frost, M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, 1982.
  • [18] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences 46 (1) (2004) 81–98.
  • [19] X. Teng, T. Wierzbicki, Evaluation of six fracture models in high velocity perforation, Engineering Fracture Mechanics 73 (12) (2006) 1653–1678.
  • [20] I. Barsoum, J. Faleskog, Rupture mechanisms in combined tension and shear—experiments, International Journal of Solids and Structures 44 (6) (2007) 1768–1786.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e714bf1-ad92-48b7-be68-35b43db01660
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.