PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustic characterization of the 1.5 Tesla MRI facility in Mobile Imaging Trailer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Magnetic Resonance (MR) imaging is a very important medical tool for diagnosis of the internal organs of the patient. The major problem associated with MRI is its high noise during operation responsible for anxiety, discomfort and can be harmful for the patient as well as long exposure raises the safety concerns for the operating staffs. This study involves the characterization of the noise in the vicinity of 1.5 Tesla Mobile Imaging Trailer-MRI (MIT-MRI) system, aimed at evaluating the acoustic parameters in the examination room during scanning. The acoustic measurements were carried out using the microphones located inside the MRI examination room for variations of Diffusion Weighted Imaging (DWI) gradient pulse sequences. The sound recordings depicted the waveforms of complex acoustic pulses with high Sound Pressure Level (SPL) spikes of impulse nature. Results revealed equivalent SPL in the MRI examination room exceeds 90 dB(A) and the peak noise was consistently above 101.5 dB(C) and DWI sequence with oscillating gradient (DWI-og) reported peak SPL of 105.9 dB(C). The dominance of the noise is identified in the frequency range of 500-3000 Hz for all scanning sequence. Results indicate that sound levels are high in the mobile scanning facility as compared to the stationary MRI in the hospitals. The noise in the control room and chiller room were also high. Given that these acoustic measurements surpass recommended noise standards, the significance of ear protection is emphasized. These results can be useful in designing the noise reduction strategies to improve the patient comfort and safety.
Rocznik
Strony
art. no. 2024219
Opis fizyczny
Bibliogr. 40 poz., fot. kolor., wykr.
Twórcy
  • AGH University of Krakow, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Krakow, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. S.A. Counter, A. Olofsson, H.F. Grahn, E. Borg; MRI acoustic noise: sound pressure and frequency analysis; Journal of Magnetic Resonance Imaging, 1997, 7(3), 606-611; DOI: 10.1002/jmri.1880070327
  • 2. R.E. Brummett, J.M. Talbot, P. Charuhas; Potential hearing loss resulting from MR imaging; Radiology, 1988, 169(2), 539-540; DOI: 10.1148/radiology.169.2.3175004
  • 3. N. Listed; Noise: A hazard for the fetus and newborn; Pediatrics, 1997, 100(4), 724-727; DOI: 10.1542/peds.100.4.724
  • 4. B. Berglund, T. Lindvall, D.H. Schwela & World Health Organization; Guidelines for community noise, 1999
  • 5. G. Pellegrino, A.L. Schuler, G. Arcara, G. Di Pino, F. Piccione, E. Kobayashi; Resting state network connectivity is attenuated by fMRI acoustic noise; Neuroimage, 2022, 247, 118791
  • 6. D. Tomasi, E.C. Caparelli, L. Chang, T. Ernst; fMRI-acoustic noise alters brain activation during working memory tasks; Neuroimage, 2005, 27(2), 377-386
  • 7. T. Wolak et al.; Influence of acoustic overstimulation on the central auditory system: An functional magnetic resonance imaging (fmri) study; Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2016, 22, 4623
  • 8. J. Karpowicz, K. Gryz; Occupational hazards to the medical personnel operating magnetic resonance scanners; Acta Bio-Optica et Informatica Medica, 2008, 14(3), 255-257
  • 9. J. Karpowicz, K. Gryz; Exposure to static magnetic fields of personnel working with magnetic resonance scanners in view of occupational hazard and safety; Acta Bio-Optica et Informatica Medica, 2008, 14(4), 326-330
  • 10. P. Baran, O. Truszczyński, Ł. Dziuda; Anxiety in patients undergoing magnetic resonance imaging; The Polish Journal of Aviation Medicine and Psychology, 2016, 21(2), 5-8
  • 11. P. Mansfield, P.M. Glover, J. Beaumont; Sound generation in gradient coil structures for MRI; Magn. Reson. Med., 1998, 39, 539-550; DOI: 10.1002/mrm.1910390406
  • 12. J.M. Jackson; Pro-active acoustic noise reduction for magnetic resonance imaging scanners.; PhD thesis, University of Tasmania, 2012
  • 13. J.R. Foster, D.A. Hall, A.Q. Summerfield, A.R. Palmer, R.W. Bowtell; Sound‐level measurements and calculations of safe noise dosage during EPI at 3 T.; J. Magn. Reson. Imaging, 2000, 12(1), 157-163; DOI: 10.1002/1522-2586(200007)12:1<157::aid-jmri17>3.0.co;2-m
  • 14. A. Moelker, P.M.T. Pattynama; Acoustic noise concerns in functional magnetic resonance imaging; Hum. Brain Mapp., 2003, 20, 123-141
  • 15. J. Hutter, A.N. Price, L. Cordero-Grande; Quiet echo planar imaging for functional and diffusion MRI; Magn. Reson. Med., 2018, 79, 1447-1459
  • 16. R.A. Hedeen, W.A. Edelstein; Characterization and prediction of gradient acoustic noise in MR imagers; Magn. Reson. Med., 1997, 37, 7-10; DOI: 10.1002/mrm.1910370103
  • 17. J. Nan, N. Zong, Q. Chen, L. Zhang, Q. Zheng, Y. Xia; A structure design method for reduction of MRI acoustic noise; Comput. Math. Methods Med., 2017, 6253428; DOI: 10.1155/2017/6253428
  • 18. W.A. Edelstein, R.A. Hedeen, R.P. Mallozzi, S.A. El-Hamamsy, R.A. Ackermann, T.J. Havens; Making MRI quieter; Magn. Reson. Imaging, 2002, 20, 155-63; DOI: 10.1016/s0730-725x(02)00475-7
  • 19. F. Hennel; Fast spin echo and fast gradient echo MRI with low acoustic noise; J. Magn. Reson. Imaging, 2001, 13(6), 960-966
  • 20. Y. Wang et al.; Sequence optimization for MRI acoustic noise reduction; J. Phys.: Conf. Ser., 2023, 2591, 012034
  • 21. M.J. McJury; Acoustic Noise and Magnetic Resonance Imaging: A Narrative/Descriptive Review; J. Magn. Reson. Imaging, 2022, 55, 337-346; DOI: 10.1002/jmri.27525
  • 22. E. Kanal, F.G. Shellock; Policies, guidelines, and recommendations for MR imaging safety and patient management; J. Magn. Reson. Imaging, 1992, 2, 247-248; DOI: 10.1002/jmri.1880020222
  • 23. M.H. AlMeer; MRI Acoustic Noise cancellation using CNN; Journal of Engineering Research, 2022, Online First Articles
  • 24. M. Li, B. Rudd, T.C. Lim, J.H. Lee; In situ active control of noise in a 4T MRI scanner; J. Magn. Reson. Imaging, 2011, 34, 662-669
  • 25. N. Lee, Y. Park, G.W. Lee; Frequency-domain active noise control for magnetic resonance imaging acoustic noise; Applied Acoustics, 2017, 118, 30-38
  • 26. A. Lasota, M. Meller; Iterative learning approach to active noise control of highly autocorrelated signals with applications to machinery noise; IET Signal Processing, 2020, 14(8), 560-568
  • 27. M. McJury, F.G. Shellock; Auditory noise associated with MR procedures: A review; J. Magn. Reson. Imaging, 2000, 12, 37-45; DOI: 10.1002/1522-2586(200007)12:1<37::aidjmri5>3.0.co;2-i
  • 28. National Electrical Manufacturers Association; Acoustic noise measurement procedure for diagnostic magnetic resonance imaging devices; NEMA Standards Publication MS-4, 2010
  • 29. International Electrotechnical Commission; Electroacoustics-Sound level meters - Part 1: Specifications (IEC 61672-1); Geneva, Switzerland, 2013
  • 30. M.E. Beutel et al.; Noise annoyance predicts symptoms of depression, anxiety and sleep disturbance 5 years later. Findings from the Gutenberg Health Study; European Journal of Public Health, 2020, 30(3), 487-492
  • 31. L. Morzyński, E. Kozłowski, R. Młyński, J. Karpowicz; The evaluation of the noise emitted by magnetic resonance scanners and its influence on the sense of hearing - a pilot study; Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna, 2011, 17(4), 292-296
  • 32. A.F. Akbar et al.; Acoustic Noise Levels in High‐field Magnetic Resonance Imaging Scanners; OTO Open, 2023, 7(3), e79
  • 33. T. Yamashiro, K. Morita, K. Nakajima; Evaluation of magnetic resonance imaging acoustic noise reduction technology by magnetic gradient waveform control; Magnetic Resonance Imaging, 2019, 63, 170-177
  • 34. T. Yamashiro, Y. Takatsu, K. Morita, M. Nakamura, Y.Yukimura, K. Nakajima; Effect of acoustic noise reduction technology on image quality: a multivendor study; Radiological Physics and Technology, 2023, 16(2), 235-243
  • 35. V.M.F. Silva, I.M. Ramos, J. Moreira, M. Marques; Evaluation of magnetic resonance acoustic noise in 1.5 and 3 Tesla scanners; European Congress of Radiology-ECR, 2016
  • 36. N. Boulant, L. Quettier; Commissioning of the Iseult CEA 11.7 T whole-body MRI: current status, gradient-magnet interaction tests and first imaging experience; Magnetic Resonance Materials in Physics, Biology and Medicine, 2023, 36(2), 175-189
  • 37. D.L. Prince, J.P. DeWilde, A.M. Papadaki, J.S. Curran, R.I. Kitney; Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T; J. Magn. Reson. Imaging, 2001, 13, 288-293
  • 38. M.E. Ravicz, J.R. Melcher, N.Y.S. Kiang; Acoustic noise during functional magnetic resonance imaging; The Journal of the Acoustical Society of America, 2000, 108(4), 1683-1696
  • 39. Y. Hattori, H. Fukatsu, T. Ishigaki; Measurement and evaluation of the acoustic noise of a 3 Tesla MR scanner; Nagoya Journal of Medical Science, 2007, 69(1-2), 23-28
  • 40. Q. Liu, J.S. Yang, Y.Y. Tang, H.Z. Li, Y.Y. Xu, X.C. Liu , S. Li, P. Yin; A multi-layered corrugated resonator acoustic metamaterial with excellent low-frequency broadband sound absorption performance; Applied Acoustics, 2024, 216, 109800
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e7148c2-6797-4acf-bc15-421cb2ed91b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.