PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification and Analysis of Learning Styles of MOOC Students

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of analyzing the impact of learning styles on the success of the MOOC course. The study was based on the Kolb’s learning style questionnaire. The survey was shared among the students of software engineering MOOC course. The results of the survey were statistically analyzed. Compared the influence of different learning styles and their strength to successful completion of the course. Analyzed the strength of different learning styles among the students of different ages and different education. The results of the research show that the learning style has an impact to the course finishing success and should be considered for the effective educational program creation.
Słowa kluczowe
Twórcy
autor
  • Department of Automated Control Systems, Lviv Polytechnic National University, S. Bandery 28a, 79008 Lviv, Ukraine
Bibliografia
  • 1. Meyer, R. What it’s like to teach a MOOC (and what the heck’s a MOOC?), Retrieved 20th July 2013, available at: http://tinyurl.com/cdfvvqy
  • 2. Christensen, Gayle and Steinmetz, Andrew and Alcorn, Brandon and Bennett, Amy and Woods, Deirdre and Emanuel, Ezekiel,The MOOC Phenomenon: Who Takes Massive Open Online Courses and Why? (November 6, 2013). Available at SSRN: https://ssrn.com/abstract=2350964 or http://dx.doi.org/10.2139/ssrn.2350964
  • 3. Jordan, K.Initial trends in enrolment and completion of massive open online courses Massive Open Online Courses, 2014. International Review of Research in Open and Distance Learning, 15(1).
  • 4. Xing, Wanli,et al. "Temporal predication of dropouts in MOOCs: Reaching the low hanging fruit through stacking generalization." Computers in human behavior 58 (2016): 119-129.
  • 5. Onah, Daniel & Sinclair, Jane & Boyatt, R.(2014). Dropout Rates of Massive Open Online Courses: Behavioural Patterns. 10.13140/RG.2.1.2402.0009.
  • 6. Sharkey, Mike, and Robert Sanders. "A process for predicting MOOC attrition." Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs. 2014.
  • 7. Chaplot, Devendra Singh, Eunhee Rhim, and Jihie Kim. "Predicting Student Attrition in MOOCs using Sentiment Analysis and Neural Networks." AIED Workshops. Vol. 53. 2015.
  • 8. S. Aryal, A. S. Porawagama, M. G. S. Hasith, S. C. Thoradeniya, N. Kodagoda and K. Suriyawansa, "MoocRec: Learning Styles-Oriented MOOC Recommender and Search Engine," 2019 IEEE Global Engineering Education Conference (EDUCON), Dubai, United Arab Emirates, 2019:1167-1172.
  • 9. Vysotska, V., & Shakhovska, N. 2018. Information technologies of gamification for training and recruitment. Saarbrücken, Germany: LAP LAMBERT Academic Publishing.
  • 10. Boyko N., Pobereyko P. 2016 Basic concepts of dynamic recurrent neural networks development. ECONTECHMOD.Lublin: Polish Academy of Sciences, Vol. 5. No. 2: 63-68.
  • 11. Shakhovska N., Veres O., Hirnyak M.. 2016. Generalized formal model of Big Data. ECONTECHMOD: Vol. 5. No. 2: 33–38.
  • 12. Lytvyn V. 2013. Design of intelligent decision support systems using ontological approach. ECONTECHMOD. 2 (1): 31-37.
  • 13. Lytvyn V., Semotuyk O. and Moroz O. 2013. Definition of the semantic metrics on the basis of thesaurus of subject area. ECONTECHMOD. Vol. 2. No. 4: 47- 52.
  • 14. Melnykova, N.; Marikutsa, U.; Sosnowski, S.. 2016 Specifics personalized approach in the analysis of medical information. Econtechmod. Vol. 5. No. 2:. 109–116.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e6fc75b-93db-4874-8fb5-5b50444e067a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.