PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the Development of the Design of Firefighter Helmets on the Mechanical Shock Absorption Capacity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A firefighter's helmet is used as a basic personal protective equipment item. The purpose of the helmet is to absorb a part of mechanical impact acting towards the rescuer's cervical spine, which may lead to its injury. The aim of the study was to determine the effect of changes in the helmet design on the threshold passive forces transferred to the firefighter's cervical spine. The test subjects were firefighter’s helmets compliant with the European standard for helmets used by fire brigades. The study was carried out under model conditions, using special equipment with a head model and an additional force sensor placed under it, where the cervical spine is anatomically located. The central impact energy was assumed to be 60 J. A semi-spherically ended beater was used. The experimentally determined force-displacement characteristics revealed two phases of force increase. Using polyurethane foam as a cushioning insert instead of the expanded polyester used in older designs reduced values of forces in the first phase of the characteristic. There were many cases where the critical passive force value was exceeded, which would have resulted in the cervical spine injury. Modifications in material selection and component manufacturing technology affect the protective capabilities of firefighter’s helmets and result in their improvement. Nevertheless, helmets that are currently in use are still affected by forces whose values exceed the ones that are considered to be safe for a firefighter.
Twórcy
  • Department of Fire Technology, Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw, Poland
  • Department of Fire Technology, Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw, Poland
  • The University College of Applied Sciences in Chelm, ul. Pocztowa 54, 22-100 Chełm, Poland
  • Military Institute of Automotive and Armor Technology, ul. Okuniewska 1, 05-070 Sulejówek, Poland
autor
  • Department of Fire Technology, Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw, Poland
  • Department of Fire Technology, Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw, Poland
  • Department of Fire Technology, Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw, Poland
autor
  • Department of Vehicle Operation and Fire-Rescue Equipment, Lviv State University of Life Safety, Kleparivska Street 35, Lviv, Ukraine
Bibliografia
  • 1. Occupational accidents in 2020; Publisher: Central Statistical Office, Demographic Surveys and Labour Market Department. Monitoring of the labour market, Warsaw, Poland, March 2021.
  • 2. Muthukumar, K.; Amirtham, K.; Sundaramahalingam, A.; Mishra, N.K. Fabrication of natural fibre based industrial safety helmet. Materials Today 2022; 64:720-724.
  • 3. Walczak, A.; Naworol, I.; Pieniak, D.; Pasierbiewicz, K.; Dzień, G. Experimental studies on changes in mechanical properties of polymer composites under impact of thermal load determined based on compression testing. MATEC Web of Conferences 2018; 247, 00027.
  • 4. Pieniak, D.; Bronisz, S.; Kamocka-Bronisz, R. Studies on redistribution of forces absorbed by a firefighter helmet in a compressive direction of cervical spine. Zeszyty Naukowe SGSP 2016; 58(2): 105-117.
  • 5. Abrate, S.; Impact of laminated composite materials. Applied Mechanics Reviews 1991, 44:44-155.
  • 6. Demuts, E.; Sandhau, R.S.; Maddux, G.E. Barely visible damage threshold in graphite epoxy. Proc Eight Int Conf Compos Mater. SAMPE 1981 vol. 4.
  • 7. Bednarek, Z.; Drzymała, T. Threat of concrete thermal spalling during fires in traffic tunnels, In: Computer systems aided science, industry and transport: the 19th international conference: conference proceedings, Zakopane, Poland, 30 Nov. – 3 Dec. 2015; Ed. Elżbieta Szychta; Publisher: Kazimierz Pulaski University of Technology and Humanities in Radom. Faculty of Transport and Electrical Engineering; Polish Academy of Science. Transport Committee. Radom, Poland, 2015.
  • 8. Sawicki, T. Czynniki zagrażające bezpieczeństwu strażaków w warunkach pożaru. Bezpieczeństwo Pracy 2004; 7-8:35-38.
  • 9. EN 443. Helmets for fire fighting in buildings and other structures. 2008. (https://www.en-standard. eu/bs-en-443-2008-helmets-for-fire-fighting-in- buildings-and-other-structures/) (accessed on 10 November 2022) 443:2008 Helmets.
  • 10. Hamouda, A.M.S.; Sohaimi, R.M.; Zaidi, A.M.A.; Abdullah, S. Materials and design issues for military helmets. In Advances in Military Textiles and Personal Equipment, 1st ed., Woodhead Publishing: Sawston, Great Britain 2012; 103-138.
  • 11. Pieniak, D.; Walczak, A. Wstępne badania degradacji mechanicznej materiałów wkładek absorbujących energię. Zeszyty Naukowe SGSP 2017; 61:121–135.
  • 12. Liu, D.; Chang, C.; Fan, C.; Hsu, S. Influence of environmental factors on energy absorption degradation of polystyrene foam in protective helmets. Engineering Failure Analysis 2003; 10:581–591.
  • 13. Jankowski, M.; Kotełko, M. Doświadczalna identyfikacja związków fizycznych w piankach poliureanowych. Przegląd Mechaniczny 2010; 4:30-33.
  • 14. Jamroziak, K.; Próba oceny urazu głowy w ochronie balistycznej miękkiej. Modelowanie inżynierskie 2011; 42:179-190.
  • 15. Pawłowski, K. Systemy adaptacyjnej absorpcji obciążeń udarowych. Doctoral thesis, Instytut Podtawowych Problemów Techniki, Warszawa, 2011.
  • 16. Baszczyński, K. Metoda i stanowisko do badania pochłaniania energii uderzenia poruszającego się obiektu przez przemysłowe hełmy ochronne, Meas Automat Monitor 2014; 60(2):90-93.
  • 17. Araszkiewicz, M.; Pawłowski, P.; Topoliński, T. Analysis of chosen strength factors of spine and spine-fixator set. Acta of Bioengineering and Biomechanics 2007; 9:3-9.
  • 18. Wolański, W.; Tejszerska, D. Analiza numeryczna powstawania urazów kręgosłupa szyjnego. Modelowanie Inżynierskie 2008; 35:139-146.
  • 19. Sances, A.; Myklebust, J.B.; Maiman, D.J.; Larson, S.J.; Cusik, J.F.; Jodat, R.W. The biomechanics of spinal injuries. Critical Review in Biomedical Engineering 1984; 11:1-76.
  • 20. Korycki, R. The damping of off-central impact for selected industrial safety helmets used in Poland. International Journal of Occupational Safety and Ergonomics 2002; 8(1):51–70.
  • 21. Lonkwic, P.; Szydło, K.; Molski, Sz. The impact of The impact of progressive gear geometry on the braking distance length under changeable operating conditions. Advances in Science and Technology Research Journal 2016; 10(29):61-167.
  • 22. Lonkwic, P.; Syta, A. Nonlinear analysis of braking process delay dynamics for the progressive gears under changeable operating conditions. Journal of Vibroengineering 2016; 18 (7):44014408.
  • 23. Sanghyun, K.; Jaewoong, L.; Changhyun, R.; Jonghyun, E.; Chankyu, K. Evaluation of carbon fiber and p-aramid composite for industrial helmet using simple cross-ply for protecting human heads, Mechanics of Materials 2019; 139:103203.
  • 24. Walczak, A.; Pieniak, D.; Naworol, I;, Wąsik, W.; Chudy, P.; Sutuła, M. Studies on absorptive properties of polymer foams used for manufacturing of firefighter helmets in Poland. Safety of Fire Technology 2018; 50(2):64–73.
  • 25. Bhudolia, S.K.; Gohel, G.; Subramanyam, E.S.B.; Leong, K.F.; Gerard, P. Enhanced impact Energy absorption and failure characteristics of novel fully thermoplastic and hybrid composite bicycle helmet shells. Materials and Design 2021; 209:110003.
  • 26. Gohel, G.; Bhudolia, S.K.; Elisetty, S.B.S.; Leong, K.F.; Gerard, P. Development and impact characterization of acrylic thermoplastic composite bicycle helmet shell with improved safety and performance. Composites Part B: Engineering 2021; 221:109008.
  • 27. Kaczyński, P.; Ptak, M.; Fernandes, F.A.O.; Chybowski, L.; Wilhelm, J.; De Sousa, R.J.A. Development and Testing of Advanced Cork Composite Sandwiches for Energy-Absorbing Structures. Materials 2019; 12(5):697.
  • 28. Fernandes, F.A.O.; De Sousa, A.R.J. Motorcycle helmets—A state of the art review. Accid Anal & Prev 2013; 56:1-21.
  • 29. Pinnoji, P.K.; Mahajan, P. Analysis of impact-induced damage and delamination in the compoite shell of a helmet. Materials and Design 2010; 31(8):3716–3723.
  • 30. Li. S.; Xiao, Z.; Zhang, Y.; Li, Q.M. Impact analysis of a honeycomb-filled motorcycle helmet based on coupled head-helmet modelling. The International Journal of Mechanical Sciences 2021;199:106406.
  • 31. Pieniak, D.; Walczak, A.; Oszust, M.; Przystupa, K.; Kamocka-Bronisz, R.; Piec, R.; Dzień, G.; Selech, J.; Ulbrich, D. Influence of Thermal Shocks on Residual Static Strength, Impact Strength and Elasticity of Polymer-Composite Materials Used in Firefighting Helmets. Materials 2022; 15:57.
  • 32. Fernandes, F.A.O.; Jardin, R.T.; Pereira, A.B.; Alves de Sousa, R.J. Comparing the mechanical performance of synthetic and natural cellular materials. Materials and Design 2015; 82:335-341.
  • 33. Di Landro, L.; Sala, G.; Olivieri, D. Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polymer Testing 2002; 21(2):217–228.
  • 34. Tabary, M.; Ahmadi, S.; Amirzade-Iranaq, M.H.; Shojaei, M.; Asl, M.S.; Ghodsi, Z.; Azarhomayoun, A.; Ansari-Moghaddam, A.; Atlasi, R.; Araghi, F.; Shafieian, M.; Heydari, S.T.; Sharif-Alhoseini, M.; O’Reilly, G.; Rahimi-Movaghar, V., The effectiveness of different types of motorcycle helmets. Accident Analysis and Prevention 2021; 154:106065.
  • 35. Bonin, S.J.; Gardiner, J.C.; Onar-Thomas, A.; Asfour, S.S.; Siegmun, G.P. The effect of motorcycle helmet fit on estimating head impact kinematics from residual liner crush. Accident Analysis and Prevention 2017; 106:315-326.
  • 36. De Sousa, R.A.; Gonçalves, D.; Coelho, R.; Teixeira-Dias, F. Assessing the effectiveness of a natural cellular material used as safety padding material in motorcycle helmets. Simulation-Transactions of The Society For Modeling and Simulation International 2021; 88(5):580–591.
  • 37. Ning, H.; Pillay, S.; Thattaiparthasarathy, K.B.; Vaidya, U.K. Design and manufacturing of long fiber thermoplastic composite helmet insert, Composite Structures 2017; 168:792-797.
  • 38. Ali, H.T.; Akrami, R.; Fotouhi, S.; Pashmforoush F.; Fragassa C.; Fotouhi M. Effect of the stacking sequence on the impact response of carbon-glass/ epoxy hybrid composites. Facta Univ Ser: Mech Eng 2020; 18(1): 69-77.
  • 39. Gao, J.; Kedir, N.; Kirk, CD.; Hernandez, J.; Wang, J.; Paulson, S.; Zhai, X.; Horn, T.; Kim,G.; Gao, J.; Fezzaa, K.; De Carlo, F.; Shevchenko, P.; Tallman, T.N.; Sterkenburg, R.; Palmese, G.R., Chen, W. Realtime damage characterization for GFRCs using high-speed synchrotron X-ray phase contrast imaging. Composites Part B: Engineering 2021; 207:108565.
  • 40. Chang, L.T.; Chang, C.H.; Chang, G.L. Fit effect of motorcycle helmet - a finite element modeling. JSME Int J A-Solid M; 2001, 44(1):185–192.
  • 41. Trajkovski, A.; Omerovic, S.; Hribernik, M.; Prebil, I. Failure properties and damage of cervical spine ligaments, experiments and modeling, The Journal of Biomechanical Engineering 2014; 136:031002.
  • 42. Baszczyński, K. The effect of temperature on the capability of industrial safety helmets to absorb impact energy. Engineering Failure Analysis 2014; 46:1–8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e6d856d-d714-41dc-bf1c-a8dc7b0919ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.