Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The demand of energy and the search for alternative energy sources are the reason why scientists are interested in starch hydrolysis. The aim of the work was to experimental study of the hydrolysis of starch by α–amylase from porcine pancreas with α–amylase deactivation. Based on the experiments data, the parameters of starch hydrolysis by α– amylase with deactivation of enzyme was estimated. A mathematical model of temperature impact on the activity of α–amylase from porcine pancreas was used. It has been estimated that the activation energy Ea and the deactivation energy Ed were equal to 66 ± 4 kJ/mol and 161 ± 12 kJ/mol, respectively. Additionally, specific constant of starch hydrolysis k 0 and specific constant of α–amylase deactivation k d0 were calculated. The optimum temperature Topt equal to 318 ± 0.5 K was obtained from mathematical model. The obtained values of Ea, Ed, k 0 and k d0 parameters were used to the model starch hydrolysis by α–amylase from porcine pancreas at 310 K and 333 K.
Rocznik
Tom
Strony
art. no. e57
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Bydgoszcz University of Science and Technology, Department of Chemical and Biochemical Engineering, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
Bibliografia
- 1. Abd El-latif A.O., Mohieldeen N., Salman A.M.A., Elpidina E.N., 2020. Isolation and purification of ¸–amylase inhibitors and their in vitro and in vivo effects on Tribolium castenuem (Herbst) and Callosbruchus maculatus (F.). J. Plant Prot. Res., 60, 377–388. DOI: 10.24425/jppr.2020.134911.
- 2. Ademakinwa A., Agunbiade M.O., Ayinla Z.A., Agboola F.K., 2019. Optimization of aqueous two-phase partitioning of Aureobasidium pullulans ¸–amylase via response surface methodology and investigation of its thermodynamic and kinetic properties. Int. J. Biol. Macromol., 140, 833–841. DOI: 10.1016/j.ijbiomac.2019.08.159.
- 3. Akhond M., Pashangeh Kh., Karbalaei-Heidari H.R., Absalan G. 2016. Efficient immobilization of porcine pancreatic α –amylase on amino–functionalized magnetite nanoparticles: Characterization and stability evaluation of the immobilized enzyme. Appl. Biochem. Biotechnol., 180, 954–968. DOI: 10.1007/s12010-016- 2145-1.
- 4. Aksoy S., Tumturk H., Hasirci N., 1998. Stability of ¸–amylase immobilized on poly(methylmethacrylate–acrylic acid) microspheres. J. Biotechnol., 60, 37–46. DOI: 10.1016/s0168-1656(97)00179-x.
- 5. Albani J.R., 2007. Starch hydrolysis by amylase, In: Principles and applications of fluorescence spectroscopy. Blackwell Publishing, Oxford, UK, 59–78.
- 6. Apar D.K., Özbek B., 2004a. α -Amylase inactivation by temperature during starch hydrolysis. Process Biochem., 39, 9, 1137–1144. DOI: 10.1016/S0032-9592(03)00224-3.
- 7. Apar D.K., Özbek B., 2004b. α -Amylase inactivation during corn starch hydrolysis process. Process Biochem., 39, 1877–1892. DOI: 10.1016/j.procbio.2003.09.014.
- 8. Apar D.K., Özbek B., 2005. Amylase inactivation during rice starch hydrolysis. Process Biochem., 40, 1367–1379. DOI: 10.1016/j.procbio.2004.06.006.
- 9. Balakrishnan D., Kumar S.S., Sugathan S. 2019. Amylases for food application – Updated information. In: Parameswaran B., Raveendran S., Varjani S. (Eds), Green bio-processes. Enzymes in industrial food processing. Springer, Singapore, 199–228. DOI: 10.1007/978-981-13-3263-0_11.
- 10. Besselink T., Baks T., Janssen A.E.M., Boom R.M., 2008. A stochastic model for predicting dextrose equivalent and saccharide composition during hydrolysis of starch by ¸–amylase. Biotechnol. Bioeng., 100, 684–697. DOI: 10.1002/bit.21799.
- 11. Bravo Rodríguez V., Jurado Alameda E., Martínez Gallegos J.F., Reyes Requena A., García López A.I., 2006. Enzymatic hydrolysis of soluble starch with an ¸ α–amylase from Bacillus licheniformis. Biotechnol. Progr., 22, 718–722. DOI: 10.1021/ bp060057a.
- 12. Gopal B.A., Muralikrishna G., 2009. Porcine pancreatic ¸–amylase and its isoforms: purification and kinetic studies. Int. J. Food Prop., 12, 571–586. DOI: 10.1080/10942910801947755.
- 13. Guo H., Tang Y., Yu Y., Xue L., Qian J., 2016. Covalent immobilization of ¸–amylase on magnetic particles ascatalyst for hydrolysis of high-amylose starch. Int. J. Biol. Macromol., 87, 537–544. DOI: 10.1016/j.ijbiomac.2016.02.080.
- 14. Koyama K., Shono J., Taguchi H., Toriba A., Hayakawa K., 2013. Effect of starch on the inactivation of amylase in starch-containing foods. Food Sci. Technol. Res., 19, 989–993. DOI: 10.3136/fstr.19.989.
- 15. Ledesma-Amaro R., Dulermo T., Nicaud J.M., 2015. Engineering Yarrowia lipolytica to produce biodiesel from raw starch. Biotechnol. Biofuels, 8, 148. DOI: 10.1186/s13068-015-0335-7.
- 16. Li G., Liu T., Jin G., Li T., Liang J., Chen Q., Chen L., Wang W., Wang Y., Song J., Liang H., Zhang C., Zhu P., Zhang W., Ding Z., Chen X., Zhang B., 2021. Serum amylase elevation is associated with adverse clinical outcomes in patients with coron- avirus disease 2019. Aging, 13, 23442–23458. DOI: 10.18632/aging.203653.
- 17. Louati H., Zouari N., Fendri A., Gargouri Y., 2010. Digestive amylase of a primitive animal, the scorpion: purification and biochemical characterization. J. Chromatog. B, 878, 853–860. DOI: 10.1016/j.jchromb.2010.01.047.
- 18. Maalej H., Maalej A., Affes S., Hmidet N., Nasri M.A., 2021. Novel digestive ¸–amylase from blue crab (Portunus segnis) viscera: purification, biochemical characterization and application for the improvement of antioxidant potential of oat flour. Int. J. Mol. Sci., 22, 1070. DOI: 10.3390/ijms22031070.
- 19. Marques S., Moreno A.D., Ballesteros M., Gírio F. 2018. 4. Starch biomass for biofuels, biomaterials, and chemicals. In: Sílvio Vaz Jr. (Ed.), Biomass and green chemistry. Building a renewable pathway. Springer International Publishing, Cham, Switzerland, 76–94.
- 20. Merck 2023. Enzymatic assay α–amylase (EC 3.2.1.1). Available at: https://www.sigmaaldrich.com/PL/pl/technical- documents/protocol/protein-biology/enzyme-activity-assays/enzymatic-assay-of-a-amylase.
- 21. Miłek J., 2011. Studying and modeling of deactivation of catalase. PhD Thesis. West Pomeranian University of Technology in Szczecin. Available at: https://zbc.ksiaznica.szczecin.pl/Content/21119/download.
- 22. Miłek J., 2020. Determination of the optimum temperature and activation energies for the hydrolysis of inulin hydrolysis by endoinulinase Aspergillus niger. Chem. Process Eng., 41, 229–236. DOI: 10.24425/CPE.2020.132545.
- 23. Miłek J., 2021a. Determination of activation energies and the optimum temperatures of hydrolysis starch by α –amylase from porcine pancreas. Molecules, 26, 4117. DOI: 10.3390/molecules 26144117.
- 24. Miłek J., 2021b. The activation energies and optimum temperatures of olive oil hydrolysis by lipase porcine pancreas. Ecol. Chem. Eng. S, 28, 389–398. DOI: 10.2478/eces-2021-0026.
- 25. Miłek J., 2022. The inulin hydrolysis by recombinant exoinulinases: determination of the optimum temperatures and activation energies. J. Therm. Anal. Calorim., 147, 8061–8067. DOI: 10.1007/s10973-021-11086-6.
- 26. Miłek J., 2023. Recombinant endo–inulinases: determination of the activation, deactivation energies and optimum temperatures in inulin hydrolysis. J. Therm. Anal. Calorim., 148, 859–866. DOI: 10.1007/s10973-022-11809-3.
- 27. Miłek J., Wójcik M., 2009. Wyznaczanie parametrów termicznej dezaktywacji enzymów. Inż. Ap. Chem., 48, 69–70.
- 28. Miller G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31, 426–428. DOI: 10.1021/ac60147a030.
- 29. Mitchell D.A., Moreira I., Krieger N., 2021. Potential of time-stepping stochastic models as tools for guiding the design and operation of processes for the enzymatic hydrolysis of polysaccharides – A review. Bioresour. Technol., 323, 124559. DOI: 10.1016/j.biortech.2020.124559.
- 30. Moreira I., Krieger N., Mitchell D.A., 2021. Time is of the essence: a new strategy for time-stepping in stochastic models describing the enzymatic hydrolysis of colloidal suspensions of polysaccharides. Chem. Eng. J., 405, 126672. DOI: 10.1016/j.cej.2020.126672.
- 31. Murthy G.S., Johnston D.B., Rausch K.D., Tumbleson M.E., Singh V., 2011. Starch hydrolysis modeling: application to fuel ethanol production. Bioprocess Biosyst. Eng., 34, 879–890. DOI: 10.1007/s00449-011-0539-6.
- 32. Oszmiański J., Lachowicz S., Nowicka P., Rubiński P., Cebulak T., 2021. Evaluation of innovative dried purée from Jerusalem artichoke - in vitro studies of its physicochemical and health-promoting properties. Molecules, 26, 2644. DOI: 10.3390/molecules26092644.
- 33. Presečki A.V., Blažević Z.F., Vasić-Rački Ð., 2013. Mathematical modeling of maize starch liquefaction catalyzed by ¸–amylases from Bacillus licheniformis: effect of calcium, pH and temperature. Bioprocess Biosyst. Eng., 36, 117–126. DOI: 10.1007/s00449-012-0767-4.
- 34. Sočan J., Purg M., Åqvist J., 2020. Computer simulations explain the anomalous temperature optimum in a cold–adapted enzyme. Nat. Commun., 11, 2644. DOI: 10.1038/s41467-020-16341-2.
- 35. Wang Y., Ral J.-P., Saulnier L., Kansou K., 2022. How does starch structure impact amylolysis? Review of current strategies for starch digestibility study. Foods, 11, 1223. DOI: 10.3390/foods11091223.
- 36. Wojciechowski P.M., Koziol A., Noworyta A., 2001. Iteration model of starchhydrolysis by amylolytic enzymes. Biotechnol. Bioeng., 75, 530–539. DOI: 10.1002/bit.10092.
- 37. Wojcik M., Miłek J., 2016. A new method to determine optimum temperature and activation energies for enzymatic reactions. Bioprocess Biosyst. Eng., 39, 1319–1323. DOI: 10.1007/ s00449-016-1596-7.
- 38. Zinck S.S., Christensen S.J., Sørensen O.B., Svensson B., Meyer A.S., 2023. Importance of inactivation methodology in enzymatic processing of raw potato starch: NaOCl as efficient amylase inactivation agent. Molecules, 28, 2947. DOI: 10.3390/molecules28072947
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e695247-9edf-4bc9-89b7-7f4d9d7bb5ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.