PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Continuous Head-related Transfer Function Representation Based on Hyperspherical Harmonics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Expressing head-related transfer functions (HRTFs) in the spherical harmonic (SH) domain has been thoroughly studied as a method of obtaining continuity over space. However, HRTFs are functions not only of direction but also of frequency. This paper presents an extension of the SH-based method, utilizing hyperspherical harmonics (HSHs) to obtain an HRTF representation that is continuous over both space and frequency. The application of the HSH approximation results in a relatively small set of coefficients which can be decoded into HRTF values at any direction and frequency. The paper discusses results obtained by applying the method to magnitude spectra extracted from exemplary HRTF measurements. The HRTF representations based on SHs and HSHs exhibit similar reproduction accuracy, with the latter one featuring continuity over both space and frequency and requiring much lower number of coefficients. The developed HSH-based continuous functional model can serve multiple purposes, such as interpolation, compression or parametrization for machine-learning applications.
Rocznik
Strony
127--139
Opis fizyczny
Bibliogr. 52 poz., wykr.
Twórcy
  • Department of Robotics and Mechatronics AGH University of Science and Technology
Bibliografia
  • 1. AES (2015), AES69-2015. AES standard for file exchange – Spatial acoustic data file format, Audio Engineering Society.
  • 2. Agterberg M.J.H, Snik A.F.M, Hol M.K.S, Van Wanrooij, M.M., Van Opstal A.J. (2012), Contribution of monaural and binaural cues to sound localization in listeners with acquired unilateral conductive hearing loss: Improved directional hearing with a bone-conduction device, Hearing Research, 286(1–2): 9-18, doi: 10.1016/j.heares.2012.02.012.
  • 3. Ahrens J., Thomas M.R.P., Tashev I. (2012), HRTF magnitude modeling using a non-regularized least-squares fit of spherical harmonics coefficients on incomplete data, [in:] Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (IEEE).
  • 4. Algazi V.R., Avendano C., Duda R.O. (2001), Elevation localization and head-related transfer function analysis at low frequencies, The Journal of the Acoustical Society of America, 109(3): 1110-1122, doi: 10.1121/1.1349185.
  • 5. Alon D.L., Ben-Hur Z., Rafaely B., Mehra R. (2018), Sparse head-related transfer function representation with spatial aliasing cancellation, [in:] 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6792-6796, doi: 10.1109/ICASSP.2018.8462101.
  • 6. Andreopoulou A., Begault D.R., Katz B.F. (2015), Inter-Laboratory round robin HRTF measurement comparison, IEEE Journal on Selected Topics in Signal Processing, 9(5): 895-906, doi: 10.1109/JSTSP.2015.2400417.
  • 7. Andreopoulou A., Roginska A., Mohanraj H. (2013), Analysis of the spectral variations in repeated head-related transfer function measurements, [in:] International Conference on Auditory Display, pp. 213-218.
  • 8. Bates A.P., Khalid Z., Kennedy R.A. (2015), On the use of Slepian functions for the reconstruction of the head-related transfer function on the sphere, [in:] 2015 9th International Conference on Signal Processing and Communication Systems (ICSPCS).
  • 9. Begault D.R., Wenzel E.M., Anderson M.R. (2001), Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source, Journal of the Audio Engineering Society, 49(10): 904-916.
  • 10. Ben-Hur Z., Alon D.L., Rafaely B., Mehra R. (2019), Loudness stability of binaural sound with spherical harmonic representation of sparse head-related transfer functions, EURASIP Journal on Audio and Music Processing, 2019: 5, doi: 10.1186/s13636-019-0148-x.
  • 11. Blommer M.A., Wakefield G.H. (1997), Pole-zero approximations for head-related transfer functions using a logarithmic error criterion, IEEE Transactions on Speech and Audio Processing, 5(3): 278-287, doi: 10.1109/89.568734.
  • 12. Bonvallet B., Griffin N., Li J. (2007), A 3D shape descriptor: 4D hyperspherical harmonics an exploration into the fourth dimension, [in:] Proceedings of IASTED International Conference on Graphics and Visualization in Engineering, pp. 113-116.
  • 13. Breebaart J., Kohlrausch A. (2001), Perceptual (ir)relevance of HRTF magnitude and phase spectra, [in:] Proceedings of 110th AES Convention.
  • 14. Brinkmann F., Weinzierl S. (2018), Comparison of head-related transfer functions pre-processing techniques for spherical harmonics decomposition, [in:] 2018 AES International Conference on Audio for Virtual and Augmented Reality.
  • 15. Chen J., Van Veen B.D., Hecox K.E. (1995), A spatial feature extraction and regularization model for the head-related transfer function, The Journal of the Acoustical Society of America, 97(1): 439-452, doi: 10.1121/1.413110.
  • 16. Domokos G. (1967), Four-dimensional symmetry, Physical Review, 159(5): 1387-1403, doi: 10.1103/PhysRev.159.1387.
  • 17. Evans M.J., Angus J.A.S., Tew A.I. (1998), Analyzing head-related transfer function measurements using surface spherical harmonics, The Journal of the Acoustical Society of America, 104(4): 2400-2411, doi: 10.1121/1.423749.
  • 18. Gardner W.G., Martin K.D. (1995), HRTF measurements of a KEMAR, The Journal of the Acoustical Society of America, 97(6): 3907-3908, doi: 10.1121/1.412407.
  • 19. Hartung K., Braasch J., Sterbing S.J. (1999), Comparison of different methods for the interpolation of head-related transfer functions, [in:] 16th International Conference: Spatial Sound Reproduction, pp. 319-3129.
  • 20. Hu S., Trevino J., Salvador C., Sakamoto S., Suzuki Y. (2019), Modeling head-related transfer functions with spherical wavelets, Applied Acoustics, 146: 81-88, doi: 10.1016/j.apacoust.2018.10.026.
  • 21. Huopaniemi J., Zacharov N., Karjalainen M. (1999), Objective and subjective evaluation of head-related transfer function filter design, Journal of the Audio Engineering Society, 47(4): 218-239.
  • 22. Kistler D.J., Wightman F.L. (1992), A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction, The Journal of the Acoustical Society of America, 91(3): 1637-1647, doi: 10.1121/1.402444.
  • 23. Kulkarni A., Colburn H.S. (1995), Efficient finite-impulse-response filter models of the head-related transfer function, The Journal of the Acoustical Society of America, 97(5): 3278-3278, doi: 10.1121/1.411579.
  • 24. Kulkarni A., Colburn H.S. (1998), Role of spectral detail in sound-source localization, Nature, 396(6713): 747-749, doi: 10.1038/25526.
  • 25. Kulkarni A., Colburn H.S. (2004), Infinite-impulse-response models of the head-related transfer function, The Journal of the Acoustical Society of America, 115(4): 1714-1728, doi: 10.1121/1.1650332.
  • 26. Kulkarni A., Isabelle S.K., Colburn H.S. (1999), Sensitivity of human subjects to head-related transfer-function phase spectra, The Journal of the Acoustical Society of America, 105(5): 2821-2840, doi: 10.1121/1.426898.
  • 27. Langendijk E.H.A., Bronkhorst A.W. (2002), Contribution of spectral cues to human sound localization, The Journal of the Acoustical Society of America, 112(4): 1583-1596, doi: 10.1121/1.1501901.
  • 28. Li J., Wu B., Yao D., Yan Y. (2021), A mixed-order modeling approach for head-related transfer function in the spherical harmonic domain, Applied Acoustics, 176: 107828, doi: 10.1016/j.apacoust.2020.107828.
  • 29. Liu H., Fang Y., Huang Q. (2019), Efficient representation of head-related transfer functions with combination of spherical harmonics and spherical wavelets, IEEE Access, 7: 78214-78222, doi: 10.1109/ACCESS.2019.2921388.
  • 30. Macpherson E.A., Middlebrooks J.C. (2002), Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited, The Journal of the Acoustical Society of America, 111(5): 2219-2236, doi: 10.1121/1.1471898.
  • 31. Majdak P. et al. (2013), Spatially oriented format for acoustics: A data exchange format representing head-related transfer functions, [in:] Proceedings of 134th AES Convention.
  • 32. Nishino T., Kajita S., Takeda K., Itakura F. (1999), Interpolating head related transfer functions in the median plane, [in:] Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 167-170.
  • 33. Pasha Hosseinbor A. et al. (2015), 4D hyperspherical harmonic (HyperSPHARM) representation of surface anatomy: A holistic treatment of multiple disconnected anatomical structures, Medical Image Analysis, 22(1): 89-101, doi: 10.1016/j.media.2015.02.004.
  • 34. Pasqual A.M. (2014), Spherical harmonic analysis of the sound radiation from omnidirectional loudspeaker arrays, Journal of Sound and Vibration, 333(20): 4930-4941, doi: 10.1016/j.jsv.2014.05.006.
  • 35. Rasumow E. et al. (2014), Smoothing individual head-related transfer functions in the frequency and spatial domains, The Journal of the Acoustical Society of America, 135(4): 2012–2025, doi: 10.1121/1.4867372.
  • 36. Romigh G.D., Brungart D.S., Stern R.M., Simpson B.D. (2015), Efficient real spherical harmonic representation of head-related transfer functions, [in:] IEEE Journal on Selected Topics in Signal Processing, 9(5): 921-930, doi: 10.1109/JSTSP.2015.2421876.
  • 37. Shabtai N.R., Behler G., Vorländer M., Weinzierl S. (2017), Generation and analysis of an acoustic radiation pattern database for forty-one musical instruments, The Journal of the Acoustical Society of America, 141(2): 1246-1256, doi: 10.1121/ 1.4976071.
  • 38. Shekarchi S., Hallam J., Christensen-Dalsgaard J. (2013), Compression of head-related transfer function using autoregressive-moving-average models and Legendre polynomials, The Journal of the Acoustical Society of America, 134(5): 3686-3696, doi: 10.1121/1.4822477.
  • 39. Ultraspherical polynomials (n.d.), Encyclopedia of Mathematics, http://encyclopediaofmath.org/index.php?title=Ultraspherical_polynomials&oldid=52128.
  • 40. Szwajcowski A. (2021), Objective-Oriented Directivity. MATLAB toolbox for processing directivity models (access: 3.06.2022).
  • 41. Szwajcowski A., Krause D., Snakowska A. (2021), Error analysis of sound source directivity interpolation based on spherical harmonics, Archives of Acoustics, 46(1): 95-104, doi: 10.24425/aoa.2021.136564.
  • 42. Varshalovich D.A., Moskalev A.N., Khersonskii V.K. (1988), Quantum Theory of Angular Momentum, World Scientific.
  • 43. Wenzel E.M., Arruda M., Kistler D.J., Wightman F.L. (1993), Localization using nonindividualized head-related transfer functions, The Journal of the Acoustical Society of America, 94(1): 111-123, doi: 10.1121/1.407089.
  • 44. Xie B., Zhang T. (2010), The audibility of spectral detail of head-related transfer functions at high frequency, Acta Acustica United with Acustica, 96(2): 328-339.
  • 45. Zagala F., Zotter F. (2019), Idea for sign-change retrieval in magnitude directivity patterns, [in:] Conference: Fortschritte der Akustik – DAGA.
  • 46. Zhang M., Kennedy R.A., Abhayapala T.D. (2015), Empirical determination of frequency representation in spherical harmonics-based HRTF functional modeling, [in:] IEEE/ACM Transactions on Audio Speech and Language Processing, 23(2): 351-360, doi: 10.1109/TASLP.2014.2381881.
  • 47. Zhang W., Abhayapala T.D., Kennedy R.A., Duraiswami R. (2010), Insights into head-related transfer function: Spatial dimensionality and continuous representation, The Journal of the Acoustical Society of America, 127(4): 2347-2357, doi: 10.1121/1.3336399.
  • 48. Zhang W., Kennedy R.A., Abhayapala T.D. (2009), Efficient continuous HRTF model using data independent basis functions: Experimentally guided approach, IEEE Transactions on Audio, Speech and Language Processing, 17(4): 819-829, doi: 10.1109/TASL.2009.2014265.
  • 49. Zhang W., Zhang M., Kennedy R.A., Abhayapala T.D. (2012), On high-resolution head-related transfer function measurements: An efficient sampling scheme, IEEE Transactions on Audio, Speech and Language Processing, 20(2), 575-584, doi: 10.1109/TASL.2011.2162404.
  • 50. Ziegler J.D., Rau M., Schilling A., Koch A. (2017), Interpolation and display of microphone directivity measurements using higher order spherical harmonics, [in:] Proceedings of 143rd AES Convention.
  • 51. Zotkin D.N., Duraiswami R., Grassi E., Gumerov N.A. (2006), Fast head-related transfer function measurement via reciprocity, The Journal of the Acoustical Society of America, 120(4): 2202-2215, doi: 10.1121/1.2207578.
  • 52. Zotkin D.N., Duraiswami R., Gumerov N.A. (2009), Regularized HRTF fitting using spherical harmonics, [in:] IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 257-260.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e64e326-4f09-4fac-97cf-7bba4838c4be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.