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Solid lubricated bearings performance degradation assessment: 
A fuzzy self-organizing map method

Ocena obniżenia charakterystyk łożysk ze smarem stałym: 
metoda rozmytych samoorganizujących się map

Solid lubricated bearings are common components in space mechanisms, and their reliability and performance degradation as-
sessment are very crucial. In this study, a fuzzy self-organizing map method is used to perform performance degradation assess-
ment. Feature vectors are constructed by indices of vibration as well as friction torque signal. Self-organizing map is then used to 
perform performance degradation assessment and the subjection of each feature vector to normal cluster on output layer is used 
as degradation indicator. Accelerated life test results show that this method can make effective performance degradation assess-
ment and describe degradation degree in the whole life time.
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Łożyska ze smarem stałym to powszechnie stosowane elementy urządzeń, a ich niezawodność i ocena degradacji charakterystyk 
są bardzo istotne. W przedstawionej pracy wykorzystano metodę rozmytych samoorganizujących się map do oceny obniżenia 
charakterystyk. Wektory cech skonstruowano za pomocą wskaźników wibracji, jak również sygnału momentu tarcia. Następnie 
dokonano oceny obniżenia charakterystyk z wykorzystaniem samoorganizującej się mapy, a za wskaźnik degradacji przyjęto przy-
należność każdego wektora cech do normalnej grupy w warstwie wyjściowej. Wyniki badań przyspieszonych pokazują, że przy 
użyciu omawianej metody można dokonywać skutecznej oceny obniżenia charakterystyk a także opisywać stopień degradacji w 
całym okresie eksploatacji.

Słowa kluczowe: łożyska ze smarem stałym, obniżenie charakterystyk, rozmyta mapa samoorganizująca się.

1. Introduction

Solid lubricated bearings are widely used in space mechanisms 
and other appliances, due to their characteristics of negligible vapor 
contamination, wide operating temperature and ignorable surface mi-
gration [17, 25]. Their failure might cause severe economic loss, or 
even catastrophic consequences. For this reason, reliability and per-
formance degradation assessment of solid lubricated bearings have 
drawn more and more attention in this research field.

Many studies of failure mechanism and its influencing factors of 
solid lubricated bearings have been carried out. Early in 1980s, sev-
eral researches by simulation methods were reported. These studies 
mainly focused on the tribological performance of solid lubricated 
bearings, including impact factors of wear rate [2, 6], influence of 
geometry and motion forms on dynamic performance [4, 5]. In 1990s 
and later, more experimental as well as simulation studies were car-
ried out, aiming at investigating the process of particle generation 
[23], relationship between fault mechanism and outer stress and some 
other tribological behaviour [7, 17, 22, 29, 30]. These studies made 
further research on fault mechanism of solid lubricated bearings, as 
well as its relationship with environments and working conditions.

However, for the research of solid lubricated bearings, scholars 
merely concentrate on the fault mechanism analysis, while perform-
ance degradation assessment that can better meet the need to improve 
machine uptime and near-zero breakdown productivity has been 
scarcely studied [11]. Usually performance degradation assessment 
consists of two steps. Firstly, features which can reflect operating 
status should be extracted. And secondly, an assessment needs to be 
generated, describing degradation degree of the system. For solid lu-
bricated bearings, several studies on their performance degradation 

assessment have been performed. Using wear rate as a feature reflect-
ing operating status, Meeks and Bohner studied prediction of bearing 
life by creating semi-empirical wear equations [15]. This assessment 
method is built based on data acquired when failure mode is known. 
However, in actual situation, this is not always the case, which makes 
this method not very practical. Later several experimental researches 
were carried out by NASA and ESA, assessing degradation degree of 
solid lubricated bearings by carefully dismantling and observing [1, 
3, 9, 16]. Assessing methods in these studies may not be appropri-
ate for performance degradation assessment of other solid lubricated 
bearings, because dismantling is not easy to perform. Moreover, these 
methods did not consider working condition and environment factors. 
A comprehensive and effective method which can realize real-time 
monitoring of operating status of solid lubricated bearings is emer-
gently needed.

Signal processing has been extensively used for condition moni-
toring [14]. Based on feature vectors extracted from different kinds of 
signals by relevant signal processing methods, various researches on 
performance degradation assessment have been performed [8, 18–21, 
32, 33]. These researches mainly focused on intelligent assessment 
methods, and self-organizing map (SOM) is one of them. Being a to-
pology-preserving mapping from a high-dimensional input to a lower-
dimensional output space, SOM is a prominent tool for data analysis 
and clustering [13]. Application of SOM in performance degradation 
assessment is mainly based on trajectory method, which observes the 
trajectory of the best matched unit (BMU) for the data of life tests 
[21]. This method can provide the time when a test object goes into 
a certain status, but for each input vector of SOM, only the BMU is 
considered, which makes it not accurate enough. Meanwhile, in this 
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method only the time of status transition can be observed, while deg-
radation degree corresponding to each input vector is not illustrated.

In this study, a performance degradation assessment method for 
solid lubricated bearings based on fuzzy analysis of SOM output layer 
is proposed. Based on analysis of the consuming process of lubrica-
tion film in solid lubricated bearings, certain metrics of vibration and 
friction torque signal of solid lubricated bearings are selected to com-
pose feature vectors. Then the fuzzy SOM which can quantitatively 
illustrate the degradation degree is used to describe the degradation 
process. Accelerated life test of solid lubricated bearings is conducted 
to evaluate the effectiveness of this approach under different working 
stresses.

This paper is organized as follows. In Section 2, consuming proc-
ess of lubrication in solid lubricated bearings is analyzed, and feature 
vectors are composed based on processing of vibration and friction 
torque signal. Basis of SOM is then briefly presented and the pro-
posed fuzzy SOM method is introduced. In Section 3, accelerated life 
test of four groups of solid lubricated bearings is conducted and per-
formance degradation assessment is carried out based on the proposed 
fuzzy SOM method. Conclusions are in Section 4.

2. Technical background and methodology

2.1.	 Consuming of lubricant film and feature extraction

Different from bearings lubricated with oil or grease, solid lubri-
cated bearings have their particular fault mechanisms. The structure 
of a solid lubricated bearing is shown in Figure 1.

When a solid lubricated bearing is working, no outer oil supply 
system is needed. As a result, solid lubricated bearings are also called 
self-lubricating bearings. In most cases, inner and outer races of solid 
lubricated bearings are coated with lubrication film, and retainer is 
made of lubricating material. Rolling elements are usually made of 
steel or ceramics, which are not lubrication material.

In solid lubricated bearings, lubrication film on inner and outer 
races as well as lubrication material of the retainer plays as lubricants. 
When a solid lubricated bearing is put into use, at first lubrication film 
on inner and outer races plays as lubricant and this part of lubricant 
gradually consumes. Meanwhile, lubrication material of retainer is 
transferred onto inner and outer races by the rotating and spinning of 
rolling elements and plays as complementary lubricant.

Due to different working condition, transfer rate of retainer lu-
bricant can be different, and this will cause different effect on the 
performance degradation process of solid lubricated bearings. If the 
transfer rate is fluctuating within an appropriate range, a solid lubri-
cated bearing might work for a relatively long time, and turns into 
failure after both two parts of lubrication film completely consumes. 
If this rate is small, the consumed lubricant of inner and outer races 
cannot be replenished in time, and a solid lubricated bearing might 
turn into failure in a faster speed. In these two cases, the bearing fails 
due to wear caused by lack of lubricant. This failure mode is called 
‘Failure Mode 1’ in the rest of this paper. 

However, if the transfer rate is big, transferred film will accumu-
late on inner and outer races, and in this case the bearing might not 
work smoothly. Excessive transferring of retainer lubrication material 
will make cage pockets become large and collision of balls on cage 
pockets will be stronger and aggravate the instability of retainer [26]. 
Both the accumulation and the instability will accelerate the degrada-
tion process and eventually cause the bearing to failure. This failure 
mode is called ‘Failure Mode 2’ in the rest of this paper.

As mentioned before, signal processing has been widely used in 
condition monitoring, as different kinds of signals contain large quan-
tity of information of system operating status. For bearings, vibration 
signal has been most commonly used [24]. Compared with bearings 
lubricated with oil or grease, vibration signal of solid lubricated bear-
ings should have its specific characteristics owing to the different 
failure mechanism. When a solid lubricated bearing is running, small 
particles and pits are gradually generated due to the wear of lubricants 
on inner and outer races as well as the transferred film. As the bear-
ing is continuously running, each time a rolling element runs over a 
particle or a pit, an impulse is generated. As the number of particles 
and pits is increasing, more impulses are expected to occur. Therefore, 
impulses in vibration signal can be used as indication of performance 
degradation of solid lubricated bearings.

However, impulses caused by the rolling of rolling elements over 
particles and pits are weak, because the size of particles and pits is 
usually very small. Vibration signal measured by vibration sensor ex-
periences a series of modulation process, and due to inherent deficien-
cy of measuring system, much noise will be inevitably introduced into 
the acquired vibration signal [31]. Hence effective signal processing 
method is required to extract these impulses which are almost entirely 
buried in acquired signal from vibration sensor. Taking the similarity 
of the shape between an actual impulse and the well-known Morlet 
wavelet into account, the adaptive Morlet wavelet filter proposed in 
[12] is used here. RMS, Kurtosis and crest factor of each filtered sig-
nal are selected to construct feature vectors, following the method in 
[8].

Friction torque signal can also reflect the operating status of solid 
lubricated bearings [25]. If there is no liquid lubricant, bearing fric-
tion torque can be largely accounted for by Coulomb friction between 
opposing surfaces [27]. So far no quantitative relationship between 
indices of friction torque signal and performance degradation of sol-
id lubricated bearings has been reported. Only in [15], C. R. Meeks  
qualitatively pointed out that transferred film could increase friction 
torque. In this study, RMS, crest factor and variation value of each 
friction torque signal, together with RMS, Kurtosis and crest factor of 
each filtered vibration signal are used to construct feature vectors.

With constructed feature vectors, an efficient performance degra-
dation assessment method is needed. In the following sections, back-
ground of SOM is briefly introduced, and the proposed degradation 
assessment method is given in detail.

2.2.	 Theoretical background of SOM

The SOM is an artificial neural network developed by Kohonen 
in [10]. It is an unsupervised neural network which just has two layers 
and can organize itself according to the nature of the input training 
data. Basic structure of SOM is shown in Figure 2.

The number of nodes on the input layer equals the dimension of 
each input vector. On the output layer, neurons are connected with 
neighboring neurons and usually form a two dimensional regular lat-
tice hexagonally. Each neuron on the output layer is represented by 
n-dimensional weight, and n also equals the dimension of each input 
vector. Before training, weight of each neuron of the output layer is 
stochasticallly determined. In the training process, this weight is con-
tinuously adjusted at a gradually decreasing rate, and neurons on the 
output layer gradually form into clusters.

Fig. 1. Structure a solid lubricated bearing
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After training, each neuron on the output layer has certain value 
of weight, and for each input vector, a distance of it and each neuron 
on the output layer can be calculated. The neuron with the minimum 
distance is called BMU. If data from normal, degradation and typical 
failure state are used to train the SOM, clusters representing different 
states of solid lubricated bearings would appear on the output layer. 
For a run-to-failure test of solid lubricated bearings, BMUs of ex-
tracted feature vectors at different time of the test should form into a 
trajectory, which can be used to describe the performance degradation 
process of solid lubricated bearings [21].

2.3.	 Fuzzy SOM

In the above trajectory method, for each input vector, the position 
of its BMU on the output layer is used to indicate the corresponding 
status. However, there exists two problems in this method. Firstly, 
in certain cases, the distance between the input vector and its BMU 
might be close to that between it and the neuron with the second 
smallest distance to it. Here this neuron is called the second BMU. If 
the BMU and the second BMU of an input vector do not belong to the 
same cluster, it might not be accurate enough to analyze the status of 
tested bearing just by observing the position of its BMU.

Secondly, dividing output layer into clusters by training result is 
a subjective process, and in certain cases, this subjectivity might lead 
to some problems. Figure 3(a) shows the output layer of a trained 
SOM and here the color of a neuron represents the distance between 
its neighboring neurons, as shown in the corresponding diagram on 
the right of the trained SOM in Figure 3(a). Thus neuron with color 
standing for bigger value can be treated as dividing line. A prelimi-
nary clustering result is shown in Figure 3(b), and it can be seen that 
it is not easy to determine whether the two neurons marked with a 
black square belong to cluster B or C here. In this case, the accuracy 
of trajectory method would be affected.

To solve these two problems, a fuzzy analyzing method based on 
SOM is proposed in this study. Assuming that for certain type of solid 
lubricated bearing, there are typical data of normal state, degradation 
state and failure state. An SOM is trained based on typical data, and 

there are clusters formed on output layer. Here l is used to represent 
the number of clusters on output layer and l can be determined using 
Davies-Boulding clustering index [28]. Normally, there will be one 
cluster corresponding to normal state. Specify normal state as the 1st 

state. For a run-to-failure test of the same type of bearing, a group of 
data is obtained, denoted as x1, x2,…, xm, and m is the number of sam-
pling points. Use n to represent the dimension of input vector.

For each input vector, the distance between it and each neuron in 
each cluster is calculated. Use ( )

,
i

j kd  to represent the distance between 

xi, the ith input vector, and wj,k, the jth neuron in the kth cluster. Here 
i=1,2,…,m, k=1,2,…,l, j=1,2,…,sk, and sk represents the number of 
neurons in the kth cluster. And ( )

,
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Use Di,k to represent the average distance between the ith input 
vector and each neuron in the kth cluster, as shown in
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It can be seen from this derivation process that compared with 
conventional SOM method, the proposed fuzzy SOM method take 
the distance between an input vector and all neurons in all clusters 
into consideration. It uses the objection of an input vector to normal 
state as performance degradation indicator and is intuitionistic. For a 
run-to-failure test of solid lubricated bearings, following the curve of 
the subjection of each feature vector to normal state, the performance 
degradation assessment can be carried out. The method proposed in 
this paper is depicted in Figure 4.

3. Experimental results and analysis

3.1.	 Experiment rig

Accelerated life test was conducted to validate the effectiveness 
of the proposed method. Experiment rig is shown in Figure 5. Four 
groups of bearings were tested and Figure 5 only shows two of them. 
Each group had three pairs of bearings and was driven by a DC brush-
less motor. Vibration and friction torque signal for each group were 
obtained by corresponding sensors. 

Before the test, each pair of bearings was preloaded axial loads. 
Vibration and friction torque signal were collected at the sample rate 
of 25.6 kHz and 50 Hz, respectively. Data collection was conducted 
every four hours, i.e. six times a day. Each collection lasted for 4 
seconds. The test lasted for 47 days and at the end of the test, three 
of the four groups of bearings were in failure state. Note that this 
test was performed in nitrogen environment. Parameters and operat-

Fig. 2. Structure of SOM

Fig. 3. A trained SOM and its clustering
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ing condition of tested bearings are shown in Table 1 and Table 2, 
respectively.

3.2.	 Results and analysis

Group 4 and Group 3 ended up at the 9th and the 31st day of the 
test, respectively. Group 2 ended up at the 45th day of the test. At the 
end of the test, Group 1 was still working. Dismantling results showed 
that there was large quantity of debris on inner and outer races of 
Group 4. For Group 3 and Group 2, a number of cracks and debris 
on inner and outer races as well as balls were observed. Group 1 was 
also dismantled after test and only small amount of debris and cracks 
were observed on inner and outer races. Combining with the observed 
results of the amplitude of vibration and friction torque signal, it can 
be concluded that Group 4 ended up in ‘Failure Mode 2’ and Group 
3 and Group 2 ended up in ‘Failure Mode 1’. For Group 1, certain 
degrees of performance degradation also took place.

Before the accelerated life test, a life test of the same type of solid 
lubricated bearings had been conducted. In this life test, the number 
of specimen is two, and both of them work under normal condition. 
Vibration and friction torque signal were also obtained. At the end of 
this test, one of the two specimen ended up in ‘Failure Mode 1’ and 
the other one ended up in ‘Failure Mode 2’. Data acquired in this life 
test at typical status, i.e. normal, degradation and faiure, are used to 
train an SOM and the trained SOM is then used to conduct the per-
formance degradation assessment of solid lubricated bearings in the 
accelerated life test.

As mentioned above, for every time of signal acquisition, both in 
the previous life test and the accelerated life test, vibration signal is 
propossed by adaptive Morlet wavelet filter. Then RMS, crest factor 
and kurtosis of the filtered vibration signal as well as RMS, crest fac-
tor and vatiation value of friction torque signal are calculated and used 
to construct feature vectors. These obtained vectors act as the input of 
SOM. Input dimension of SOM here is six. Number of neurons on the 
output layer and the ratio of side lengths are automatically determined 
by the SOM toolbox.

In final assessment of performance degradation of the four tested 
groups of bearings, trajectory method and the proposed fuzzy SOM 
method are adopted and results come out from these two methods are 
compared with each other. The SOM toolbox developed by Helsinki 
University of Technology is used. Firstly, SOM is trained by speci-
fied data, which consist of five groups, i.e. normal data, degradation 
and fault data of ‘Failure Mode 1’, and degradation and fault data of 
‘Failure Mode 2’, respectively. These five groups are later labeled as 
‘N’, ‘D1’, ‘F1’, ‘D2’ and ‘F2’ in SOM, respectively.

U-matrix of the trained SOM is shown in Figure 6(a). A prelimi-
nary clustering is made, judging by the color difference, and the result 
is also illustrated in Figure 6(a), and it can be seen that there are three 
clusters, marked with ‘1’, ‘2’ and ‘3’ , respectively. Figure 6(b) shows 
the Davies-Boulding clustering index curve. On this curve three gets 
minimum value, which shows that three is the optimal number of 
clusters. The labeled map is shown in Figure 6(c). It can be seen that 
cluster ‘1’ corresponds to normal state, cluster ‘2’ corresponds to deg-
radation state and cluster ‘3’ corresponds to failure state. Though in 
cluster ‘3’, ‘Failure Mode 1’ and ‘Failure Mode 2’ can be further clas-
sified, here they are treated as the same cluster as we only consider the 
degradation degree, not specified failure mode.

Degradation trajectory of the four groups of tested bearings is 
shown in Figure 7. For Groups 1, 2 and 3, each point stands for the 
status in two days. For Group 4, each point represents the status in one 
day. It can be seen that Group 1 moves from normal state to degrada-
tion state at the 29th day. Group 2 moves from normal state to degra-
dation state at the 25th day, then to failure state at the 43rd day. Group 
3 moves from normal state to degradation state at the 13rd day, then 
to failure state at the 29th day. Group 4 moves from normal state to 
degradation state at the 3rd day, then to failure state at the 9th day. For 
Group 2, 3 and 4, time falling into failure state is broadly in line with 
judgments of test operators. However, degradation degree in degrada-

Fig. 4. The proposed performance degradation assessment method

Table 1.	  Parameters of tested bearings

Inner diam-
eter (mm)

Outer diam-
eter (mm) Width (mm) Ball number Ball diam-

eter (mm)

7 22 7 7 4.0

Fig. 5. Accelerated life test of solid lubricated bearings

Table 2.	 Operation condition of tested bearings

Group Number Rotation Veloc-
ity (rpm) Axial Load (N) Temperature 

(°C)

1 1500 20 20

2 1000 30 20

3 1500 30 20

4 1000 50 20
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tion state, corresponding to Cluster 2 in Figure 6(a) cannot be seen 
with trajectory method.

Then, with the method proposed in Section 2.3, performance deg-
radation assessment of four tested groups is carried out, and the result 
is shown in Figure 8. 0.5 is selected as failure state threshold. Failure 
date of Group 2, 3 and 4 judged by trajectory method and fuzzy SOM 
method, as well as actual test result is compared in Table 3.

It can be seen that failure time of the four tested groups by fuzzy 
SOM method is in full accordance with test results. Moreover, be-
fore failure, degradation degree of the four groups of bearings can be 
clearly seen. In reality, this can give operators more time to conduct 
maintenance or replacement.

4. Conclusion

In this study, a new method for performance degradation assess-
ment of solid lubricated bearings is proposed. After feature extrac-
tion based on vibration as well as friction torque signal, a fuzzy SOM 
is used to make performance degradation assessment. After training 
SOM with typical data, clusters are formed on output layer, and the 
subjection of an input vector to the cluster corresponding to normal 
state is used as performance degradation indicator. Accelerated life 
test results show that this method can give the time of transition to 
failure state as well as describe the degradation degree in the whole 
lifetime. Future studies should focus on the effect of training data 
selection on clustering forming of trained SOM and its accuracy of 
performance degradation assessment.

Fig. 6.	 Trained SOM with typical data (a) U-matrix and clustering, (b) Dav-
ies-Boulding clustering index curve, (c) Labeled map

Fig. 8.	 Degradation curve of test bearings (a) Group 1, (b) Group 2, (c) Group 
3, (d) Group 4

Table 3.	 Results comparison

Group Number Actual Failure 
Date

Failure Date 
by Trajectory 

Method

Failure date 
by Fuzzy SOM 

Method

2 45 43 45

3 31 29 31

4 9 9 9

Fig. 7.	 Degradation trajectory of tested bearings (a) Group 1, (b) Group 2, (c) 
Group 3, (d) Group 4
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