Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The iterative learning fault-tolerant control strategies with non-strict repetitive initial state disturbances are studied for the linear discrete networked control systems (NCSs) and the nonlinear discrete NCSs. In order to reduce the influence of the initial state disturbance in iteration, for the linear NCSs, considering the external disturbance and actuator failure, the iterative learning fault-tolerant control strategy with impulse function is proposed. For the nonlinear NCSs, the external disturbance, packet loss and actuator failure are considered, the iterative learning fault-tolerant control strategy with random Bernoulli sequence is provided. Finally, the proposed control strategies are used for simulation research for the linear NCSs and the nonlinear NCSs. The results show that both strategies can reduce the influence of the initial state disturbance on the tracking effect, which verifies the effectiveness of the given method.
Rocznik
Tom
Strony
art. no. e140934
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- School of Automation, Beijing Information Science and Technology University, Beijing 100192, China
autor
- School of Automation, Beijing Information Science and Technology University, Beijing 100192, China
Bibliografia
- [1] G. Saeid, S.A. Akbar, and N.S. Vahid, “Event-triggered robust model predictive control for Lipschitz nonlinear networked control systems subject to communication delays,” Trans. Inst. Meas. Control, vol. 43, no. 5, pp. 1126–1142, 2021, doi: 10.1177/0142331220969058.
- [2] M. M. Azimi, A. A. Afzalian and R, Ghaderi, “Decentralized stabilization of a class of large scale networked control systems based on modified event-triggered scheme,” Int. J. Dyn. Control, vol. 9, no. 1, pp. 149–159, 2021, doi: 10.1007/s40435-020-00649-4.
- [3] T. Zhongda. “Networked control system time-delay compensation based on PI-based dynamic matrix control,” At-Automatisierungstechnik, vol. 69, no. 1, pp. 41–51, 2021, doi: 10.1515/auto-2020-0020.
- [4] L. Yicai and L. Bin, “Research on the Control of Networked Switched Systems with Delay and Packet Dropout,” Control Eng. China, vol. 25, no. 8, pp. 1482–1489, 2018, doi: 10.14107/j.cnki.kzgc.160777.
- [5] Y. Li, B. Zhang, and X. Xu, “Robust control for permanent magnet in-wheel motor in electric vehicles using adaptive fuzzy neural network with inverse system decoupling,” Trans. Can. Soc. Mech. Eng., vol. 42, no. 3, pp. 286–297, 2018, doi: 10.1139/tcsme-2018-0027.
- [6] A. Gunathillake, H. Huang, and A.V. Savkin, “Sensor-Network-Based navigation of a mobile robot for extremum seeking using a topology map,” IEEE Trans. Ind. Inf., vol. 15, no. 7, pp. 3962–3972, 2019, doi: 10.1109/TII.2019.2893345.
- [7] H. Zhang et al., “New Results on Stability and Stabilization of Networked Control Systems with Short Time-Varying Delay,” IEEE Trans. Cybern., vol. 46, no. 12, pp. 2772–2781, 2017, doi: 10.1109/TCYB.2015. 2489563.
- [8] R.A. Kumar and K. Srinivasan, “State estimation for a networked control system with packet delay, packet dropouts and uncertain observation in S-E and C-A channels,” Optim. Control. Appl. Methods, vol. 41, no. 6, pp. 2094–2114, 2020, doi: 10.1002/oca.2614.
- [9] B. Koo, W. Kwon, and S. Lee, “Integral-based event-triggered PD control for systems with network-induced delay using a quadratic generalised free-weighting matrix inequality,” IET Control Theory Appl., vol. 11, no. 18, pp. 3261–3268, 2017, doi: 10.1049/iet-cta.2017.0473.
- [10] S. Yuanbo et al., “Robust Mixed H2/H¥Control for An Uncertain Wireless Sensor Network Systems with Time Delay and Packet Loss,” Int. J. Control Autom. Syst., vol. 19, no. 1, pp. 88–100, 2020, doi: 10.1007/s12555-018-0508-9.
- [11] Y. Wang and Y. Zhang, “Stability Analysis of Network Control System with Time Delay and Packet Dropout,” Comput. Eng., vol. 41, no. 10, pp. 111–116, 2015, doi: 10.3969/j.issn.1000-3428.2015.10.021.
- [12] P.Witczak et al., “A robust predictive actuator fault-tolerant control scheme for Takagi-Sugeno fuzzy systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 4, pp. 977–987, 2015, doi: 10.1515/bpasts-2015-0111.
- [13] G. Min, J. Shun, and P. Feng, “Random fault detection for networked control systems with packet losses,” J. Nanjing Univ. Sci. Technol., vol. 42, no. 3, pp. 292–299, 2018, doi: 10.14177/j.cnki.32-1397n.2018.42.03.006.
- [14] F. Fang et al., “Fault tolerant sampled-data H¥ control for networked control systems with probabilistic time-varying delay,” Inf. Sci., vol. 544, no. 8, pp. 395–414, 2021, doi: 10.1016/j.ins.2020.08.063.
- [15] L. Hongfei et al., “Integral-based event-triggered fault estimation and impulsive fault-tolerant control for networked control systems applied to underwater vehicles,” Neurocomputing, vol. 442, no. 2, pp. 36–47, 2021, doi: 10.1016/j.neucom.2021.02.035.
- [16] X. Bu, F. Yu, Z. Hou, and F. Wang, “Iterative learning control for a class of nonlinear systems with measurement dropouts,” Control Theory Appl., vol. 29, no. 11, pp. 1458–1464, 2012, doi: 10.1016/j.nonrwa.2012.07.017.
- [17] J. Yang, M. Dou, and D. Zhao, “Iterative sliding mode observer for sensorless control of five-phase permanent magnet synchronous motor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 6, pp. 845–857, 2017, doi: 10.1515/bpasts-2017-0092.
- [18] D. Shen, “Iterative learning control using faded measurements without system information: a gradient estimation approach,” Int. J. Syst. Sci., vol. 51, no. 14, pp. 2675–2689, 2020, doi: 10.1080/00207721.2020.1799258.
- [19] T. Hongfeng et al., “Robust point-to-point iterative learning control with trial-varying initial conditions,” IET Control Theory Appl., vol. 14, no. 19, pp. 3344–3350, 2020, doi: 10.1049/ietcta.2020.0557.
- [20] L. Shaozhe et al., “An Experience Transfer Approach for the Initial Data of Iterative Learning Control,” Appl. Sci.s, vol. 11, no. 4, pp. 1631–1631, 2021, doi: 10.3390/app11041631.
- [21] D. Meng and K.L. Moore, “Convergence of iterative learning control for SISO nonrepetitive systems subject to iterationdependent uncertainties,” Automatica, vol. 79, pp. 167–177, 2017, doi: 10.1016/j.automatica.2017.02.009.
- [22] D. Meng and K.L. Moore. “Robust Iterative Learning Control for Nonrepetitive Uncertain Systems,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 907–913, 2017, doi: 10.1109/TAC.2016.2560961.
- [23] J. Ling et al., “A Master-slave Cross-coupled Iterative Learning Control for Repetitive Tracking of Nonlinear Contours in Multi-axis Precision Motion Systems,” Acta Autom. Sin., vol. 43, no. 12, pp. 2127–2140, 2017, doi: 10.16383/j.aas.2017.c160725.
- [24] X. Hao and D. Wang. “Fuzzy PID Iterative learning control for a class of nonlinear systems with arbitrary initial value,” in Proceedings of the 7th International Conference on Education, Management, Computer and Medicine (EMCM), 2016, pp. 304–311, doi: 10.2991/emcm-16.2017.60.
- [25] K.-H. Park, “A study on the robustness of a PID-type iterative learning controller against initial state error,” Int. J. Syst. Sci., vol. 30, no. 1, pp. 49–59, 2012, doi: 10.1080/002077299292669.
- [26] Y. Zhao et al., “Fractional-order iterative learning control with initial state learning design,” Nonlinear Dyn., vol. 90, pp. 1257–1268, 2017, doi: 10.1007/s11071-017-3724-6.
- [27] Y.H. Lan, “Iterative learning control with initial state learning for fractional order nonlinear systems,” Comput. Math. Appl., vol. 64, no. 10, pp. 3210–3216, 2012, doi: 10.1016/j.camwa.2012.03.086.
- [28] Y.H Lan and Z.M. Cui, “ILC with Initial State Learning for Fractional Order Linear Distributed Parameter Systems,” Algorithms, vol. 11, no. 6, pp. 85–96, 2018, doi: 10.3390/a11060085.
- [29] Y.S. Wei and X.D. Li, “Robust higher-order ILC for non-linear discrete-time systems with varying trail lengths and random initial state shifts,” IET Control Theory Appl., vol. 11, no. 15, pp. 2440–2447, 2017, doi: 10.1049/iet-cta.2017.0008.
- [30] W. Xia, X. Xu, T. Lu, and P. Ma, “Two Degrees of Freedom Vehicle TrajectoryTracking Based on Iterative Control,” J. Luoyang Normal Univ., vol. 34, no. 5, pp. 37–39, 2015, doi: 10.16594/j.cnki.41-1302/g4.2015.05.029.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e5e156e-95c7-4abb-91fa-c35b15b1df8c