PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Safety analysis of complex multistate ageing system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
17th Summer Safety & Reliability Seminars - SSARS 2023, 9-14 July 2023, Kraków, Poland
Języki publikacji
EN
Abstrakty
EN
Recent developments of an innovative own earlier approach to safety analysis of a complex multistate ageing system impacted by its operation processes are presented. A safety function and other safety indicators are defined for a complex multistate ageing system changing its functional structure and consequently its safety structure and its components safety parameters during the operation and determined under the assumption that its components have piecewise exponential safety functions. Results are applied to examine safety of port and maritime transportation systems.
Twórcy
  • Polish Safety and Reliability Association, Gdynia, Poland
Bibliografia
  • Ancione, G., Paltrinieri, N. & Milazzo, M.F. 2020. Integrating real-time monitoring data in risk assessment for crane related offshore operations. Journal of Marine Science and Engineering 8(7), 1-28, 532.
  • Bautista, B.L., Torres, C.I. & Landesa, P.L. 2020. A condition-based maintenance for complex systems consisting of two different types of components. K. Kołowrocki et al. (Eds.), Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar 2020. Gdynia Maritime University, Gdynia, 7-16.
  • Berg, H.P. & Petrek, N. 2018. Threats and possible approaches of vulnerability of natural hazards on road infrastructure. Journal of Polish Safety and Reliability Association Summer Safety and Reliability Seminars 9(3), 1-10.
  • Bogalecka, M. 2020. Consequences of Maritime Critical Infrastructure Accidents. Environmen-tal Impacts. Modeling - Identification - Prediction - Optimization - Mitigation. Elsevier, Amsterdam - Oxford - Cambridge.
  • Brunelle, R.D. & Kapur, K.C. 1999. Review and classification of reliability measures for multistate and continuum models. IEEE Transactions 31, 1117-1180.
  • Čepin, M. 2020. The extended living probabilistic safety assessment. Proceedings of the Institution of Mechanical Engineers. Part. O, Journal of Risk and Reliability 234(1), 183-192.
  • Dąbrowska, E. 2020. Safety analysis of car wheel system impacted by operation process. Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar 5, 61-75.
  • De Porcellinis, S., Oliva, G., Panzieri, S. & Setola, R. 2009. A holistic-reductionistic approach for modeling interdependencies. Critical Infrastructure Protection III. Springer, 215-227.
  • Ferreira, F. & Pacheco, A. 2007. Comparison of level-crossing times for Markov and semi-Markov processes. Statistics & Probability Letters 77(2), 151-157.
  • Glynn, P.W. & Haas, P.J. 2006. Laws of large numbers and functional central limit theorems for generalized semi-Markov processes. Stochastic Models 22(2), 201-231.
  • Gouldby, B.P., Schultz, M.T., Simm, J.D. & Wibowo, J.L. 2010. Beyond the Factor of Safety: Developing Fragility Curves to Characterize System Reliability, Report in Water Resources Infrastructure Program ERDC SR-10-1, Prepared for Headquarters. U.S. Army Corps of Engineers, Washington.
  • Grabski, F. 2015. Semi-Markov Processes: Application in System Reliability and Maintenance. Elsevier, Amsterdam - Boston - Heidelberd - London - New York - Oxford - Paris - San Diego - San Francisco - Sydney - Tokyo.
  • Holden, R., Val, D.V., Burkhard, R. & Nodwell, S. 2013. A network flow model for interdependent infrastructures at the local scale. Safety Science 53(3), 51-60.
  • Klabjan, D. & Adelman, D. 2016. Existence of optimal policies for semi-Markov decision processes using duality for infinite linear programming. Society for Industrial and Applied Mathematics Control and Optimization 44(6), 2104-212.
  • Kołowrocki, K. 2000. On asymptotic approach to multi-state systems reliability evaluation. Recent Advances in Reliability Theory: Methodology, Practice and Inference. Birkhauser, Boston 11, 163-180.
  • Kołowrocki, K. 2003. Asymptotic approach to reliability analysis of large systems with degrading components. International Journal of Reliability, Quality and Safety Engineering 10(3), 249-288.
  • Kołowrocki, K. 2005. Reliability of Large Systems. Elsevier, Amsterdam - Boston - Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo.
  • Kołowrocki, K. 2008. Reliability and risk analysis of multi-state systems with degrading components. International Journal of Reliability, Quality and Safety Engineering 6(2), 213-228.
  • Kołowrocki, K. 2011. Reliability modelling of complex systems. H. Pham (Eds.), Safety and Risk Modelling and Its Applications. Springer, 3-54.
  • Kołowrocki, K. 2014. Reliability of Large and Complex Systems. 2nd Edition. Elsevier, Amsterdam - Boston -Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo.
  • Kołowrocki, K. 2020a. Port Oil Terminal Safety Examination. Scientific Journals of the Maritime University of Szczecin 61(133), 143-151.
  • Kołowrocki, K. 2020b. Safety analysis of multistate ageing car wheel system with dependent components. K. Kołowrocki et al. (Eds.), Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar, 101-116.
  • Kołowrocki, K. 2021. Safety analysis of critical infrastructure impacted by operation and climate-weather changes - theoretical backgrounds, K. Kołowrocki et al. (Eds.), Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar, 139–180.
  • Kołowrocki, K. 2022a. Safety analysis of multistate ageing system with inside dependences and outside impacts. Current Research in Mathematical and Computer Sciences III. A. Lecko (Ed.). University of Warmia and Mazury Press, 175-214.
  • Kołowrocki, K. 2022b. European Union Global Critical Infrastructure Safety Management System – research project proposition. K. Kołowrocki et al. (Eds.), Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar, 79-92.
  • Kołowrocki, K. & Kuligowska, E. 2018. Operation and climate-weather change impact on maritime ferry safety. Safety and Reliability - Safe Societies in a Changing World. Taylor and Francis, 849-854.
  • Kołowrocki, K. & Magryta, B. 2020a. Port oil terminal reliability optimization. Scientific Journals Maritime University of Szczecin.
  • Kołowrocki, K. & Magryta, B. 2020b. Changing system operation states influence on its total operation cost. DepCoS-RELCOMEX 2020: Theory and Applications of Dependable Computer Systems, 355-365.
  • Kołowrocki, K. & Magryta-Mut, B. 2020c. Safety of maritime ferry technical system impacted by operation process, K. Kołowrocki et al. (Eds.), Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar, 117-134.
  • Kołowrocki, K. & Magryta-Mut, B. 2022. Operation cost and safety optimization of maritime transportation system. Current Research in Mathematical and Computer Sciences III. A. Lecko (Ed.). University of Warmia and Mazury Press, 215-247.
  • Kołowrocki, K. & Magryta-Mut, B. 2023. Safety and operation cost optimization of complex multistate ageing systems. Advances in Reliability and Maintainability Methods and Engineering Applications: Essays in Honor of Professor Hong-Zhong Huang on his 60th Birthday, Springer.
  • Kosmowski, K.T. 2021. Functional Safety and Cybersecurity Analysis and Management in Smart Manufacturing Systems, K.B. Misra (Ed.) Handbook of Advanced Performability Engineering, Springer Nature Switzerland AG, 3.
  • Kossow, A. & Preuss, W. 1995. Reliability of linear consecutively-connected systems with multistate components. IEEE Transactions on Reliability 44, 518-522.
  • Kvassay, M., Rusnak, P., Zaitseva, E. & Kostolny, J. 2020. Minimal cut vectors of multi-state systems identified using logic differential calculus and multi-valued decision diagrams, 30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference, PSAM 2020, 3053-3060.
  • Lauge, A., Hernantes, J. & Sarriegi, J.M. 2015. Critical infrastructure dependencies: a holistic, dynamic and quantitative approach. International Journal of Critical Infrastructure Protection 8, 16-23.
  • Li, W. & Pham, H. 2005. Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks. IEEE Transactions on Reliability 54(2), 297-303.
  • Limnios, N. & Oprisan, G. 2005. Semi-Markov Processes and Reliability. Birkhauser. Boston.
  • Magryta, B. 2020. Reliability approach to resilience of critical infrastructure impacted by operation process. Journal of KONBiN 50(1), 131-153.
  • Magryta-Mut, B. 2020. Safety optimization of maritime ferry technical system, K. Kołowrocki et al. (Eds.), Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar, 175-182.
  • Magryta-Mut, B. 2023a. Port oil terminal operation cost optimization, K. Kołowrocki et al. (Eds.), Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar, 131-146.
  • Magryta-Mut, B. 2023b. Safety and operation cost optimization of port and maritime transportation systems, PhD Thesis (under completion).
  • Mercier, S. 2008. Numerical bounds for semi-Markovian quantities and application to reliability. Methodology and Computing in Applied Probability 10(2), 179-198.
  • Natvig, B. 2007. Multi-state reliability theory. Encyclopedia of Statistics in Quality and Reliability. Wiley, New York, 1160-1164.
  • Nieuwenhuijs, A., Luiijf, E. & Klaver, M. 2008. Modeling dependencies in critical infrastructures. Critical Infrastructure Protection II, IFIP International Federation for Information Processing, Springer, Boston, Massachusetts 253, 205-213.
  • Ouyang, M. 2014. Review on modelling and simulation of interdependent critical infrastructure systems. Reliability Engineering & System Safety 121, 43-60.
  • Ramirez-Marqueza, J.E. & Coit, D.W. 2007. Multi-state component criticality analysis for reliability improvement in multi-state systems. Reliability Engineering & System Safety 92, 1608-1619.
  • Rinaldi, S., Peerenboom, J. & Kelly, T. 2001. Identifying, understanding and analyzing critical infrastructure interdependencies, IEEE Control Systems Magazine 21(6), 11-25.
  • Svedsen, N. & Wolthunsen, S. 2007. Connectivity models of interdependency in mixed-type critical infrastructure networks. Information Security Technical Report 12(1), 44-55.
  • Szymkowiak, M. 2018a. Characterizations of distributions through aging intensity, IEEE Transactions on Reliability 67.
  • Szymkowiak, M. 2018b. Generalized aging intensity functions. Reliability Engineering and System Safety 178.
  • Szymkowiak, M. 2019. Lifetime Analysis by Aging Intensity Functions. Studies in Systems, Decision and Control. Springer International Publishing 196.
  • Tang, H., Yin, B.Q. & Xi, H.S. 2007. Error bounds of optimization algorithms for semi-Markov decision processes. International Journal of Systems Science 38(9).
  • Wang, Z., Huang, H.Z., Li, Y. & Xiao, N.C. 2011. An approach to reliability assessment under degradation and shock process. Reliability, IEEE Transactions on Reliability 60(4), 852-863.
  • Xue, J. 1985. On multi-state system analysis. IEEE Transactions on Reliability 34, 329-337.
  • Xue, J. & Yang, K. 1995a. Dynamic reliability analysis of coherent multi-state systems. IEEE Transactions on Reliability 4(44), 683-688.
  • Xue, J. & Yang, K. 1995b. Symmetric relations in multi-state systems. IEEE Transactions on Reliability 4(44), 689-693.
  • Yingkui, G. & Jing, L. 2012. Multi-state system reliability: a new and systematic review. Procedia Engineering 29, 531-536.
  • Zaitseva, E. & Levashenko, V. 2017. Reliability analysis of multi-state system and multiple-valued logic, International Journal of Quality & Reliability Management 34(6), 862-878.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e5a5c29-47b3-46ea-b30f-98abc908d943
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.