PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations into the stability of thin-walled composite structures with top-hat cross-sections

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a study of compressed thin-walled composite columns with an open cross-section. The tested specimens with a top-hat cross-section were made of CFRP material. Two arrangements of composite layers [0/-45/45/90]s and [90/0/90/0]s were compared. The paper focuses on the buckling phenomenon and the determination of the critical loads of the structure. It includes both numerical analyses using the finite element method (FEM) and validation on real specimens made using the autoclave technique. A comparison is made between the results obtained by both methods. The critical forces of the real specimens were determined using the P-wc3 approximation method. Both the evaluation of the buckling shape and the values of the critical forces showed a significant correlation between the experimental and numerical tests. This paper also compares the tested lay-ups.
Rocznik
Strony
311--316
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
Bibliografia
  • 1. Barkanov E, Ozoliņš O, Eglītis E, Almeida F, Bowering MC, Watson G. Optimal design of composite lateral wing upper covers. Part I: Linear buckling analysis, Aerospace Science and Technology. 2014;38: 1-8. https://doi.org/10.1016/j.ast.2014.07.010
  • 2. Orifici AC, Thomson RS, Degenhardt R, Kling A, Rohwer K, Bayandor J. Degradation investigation in a postbuckling composite stiffened fuselage panel. Composite Structures. 2008;82(2): 217-224 https://doi.org/10.1016/j.compstruct.2007.01.012
  • 3. Bambach MR. Fibre composite strengthening of thin-walled steel vehicle crush tubes for frontal collision energy absorption. ThinWalled Structures. 2013;66: 15-22. https://doi.org/10.1016/j.tws.2013.02.006
  • 4. Hutchinson JW, Koiter WT. Postbuckling theory. Applied Mechanics Reviews. 1970;12: 1353-1366.
  • 5. Byskov E, Hutchinson JW. Mode interaction in axially stiffened cylindrical shells. AIAA. 1977;15(7):941-948. https://doi.org/10.2514/3.7388
  • 6. Thompson JMT, Hunt GW. General theory of elastic stability. Wiley, New York; 1973.
  • 7. Goltermann P, Møllmann H. Interactive buckling in thin-walled beams—II. Applications. International Journal of Solids and Structures.1989;25(7): 729-749. https://doi.org/10.1016/0020-7683(89)90010-3
  • 8. Møllmann H, Goltermann P. Interactive buckling in thin-walled beams—I. Theory. International Journal of Solids and Structures. 1989;25(7): 715-728. https://doi.org/10.1016/0020-7683(89)90009-7
  • 9. Czapski P, Jakubczak P, Bieniaś J, Urbaniak M, Kubiak T. Influence of autoclaving process on the stability of thin-walled, composite columns with a square cross-section – Experimental and numerical studies. Composite Structures. 2020;250: 112594. https://doi.org/10.1016/j.compstruct.2020.112594
  • 10. Rozylo P, Debski H. Stability and load-carrying capacity of short composite Z-profiles under eccentric compression. Thin-Walled Structures. 2020;157: 107019. https://doi.org/10.1016/j.tws.2020.107019
  • 11. Rozylo P. Experimental-numerical study into the stability and failure of compressed thin-walled composite profiles using progressive failure analysis and cohesive zone model. Composite Structures. 2021;257: 113303. https://doi.org/10.1016/j.compstruct.2020.113303
  • 12. Bohlooly-Fotovat M, Kubiak T, Perlikowski P. Mixed mode nonlinear response of rectangular plates under static and dynamic compression. Thin-Walled Structures. 2023;184: 110542. https://doi.org/10.1016/j.tws.2023.110542
  • 13. Zhaochao L, Junxing Z. Nonlinear stability of the encased functionally graded porous cylinders reinforced by graphene nanofillers subjected to pressure loading under thermal effect. Composite Structures. 2020;233: 111584. https://doi.org/10.1016/j.compstruct.2019.111584
  • 14. Zhaochao L, Qian Z, Hua S, Xinhui X, Haidong K, Junxing Z. Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure. Thin-Walled Structures. 2023;183: 110370. https://doi.org/10.1016/j.tws.2022.110370
  • 15. Guobin B, Zhihua O, Zhaochao L, Fangcheng L, Hui Z, Xingxing Z, Yonggui X. Static and buckling characteristics of the porous ring reinforced by graphene nanofillers. Engineering Structures. 2022;251: 113536. https://doi.org/10.1016/j.engstruct.2021.113536
  • 16. Yan T, Fujian T, Junxing Z, Zhaochao L. In-plane asymmetric buckling of an FGM circular arch subjected to thermal and pressure fields. Engineering Structures. 2021;239: 112268. https://doi.org/10.1016/j.engstruct.2021.112268
  • 17. Rozylo P. Failure phenomenon of compressed thin-walled composite columns with top-hat cross-section for three laminate lay-ups. Composite Structures. 2023;304: 116381. https://doi.org/10.1016/j.compstruct.2022.116381
  • 18. Wysmulski P. Non-linear analysis of the postbuckling behaviour of eccentrically compressed composite channel-section columns. Composite Structures. 2023;305: 116446. https://doi.org/10.1016/j.compstruct.2022.116446
  • 19. Koiter WT. Elastic stability and post-buckling behaviour. Proceedings of the Symposium on Nonlinear Problems. University of Wisconsin Press. Wisconsin; 1963.
  • 20. Koiter WT. General theory of mode interaction in stiffened plate and shell structures. WTHD Report 590. Delft; 1976.
  • 21. Zaras J, Krolak M, Kotelko M. Metody doswiadczalne wyznaczania obciazen krytycznych i analizy zachowania się elementow konstrukcji w stanie zakrytycznym. X Krajowa Konferencja Wytrzymalosci Materialow i Badania Materialow. Kudowa-Zdroj; 20–22 wrzesien, 2006.
  • 22. Rhodes J, Zaras J. Determination of critical loads by experimental methods, chapter. In: Kołakowski Z, Kowal-Michalska K, editors. Statics, dynamics and stability of structural elements and systems. Lodz: Lodz University of Technology, a series of monographs; 2012.
  • 23. Rozylo P, Teter A, Debski H, Wysmulski P, Falkowicz K. Experimental and Numerical Study of the Buckling of Composite Profiles with Open Cross Section under Axial Compression. Applied Composite Materials. 2017;24: 1251-1264. https://doi.org/10.1007/s10443- 017-9583-y
  • 24. Debski H, Rozylo P, Wysmulski P. Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading. Composite Structures. 2020;252: 112716. https://doi.org/10.1016/j.compstruct.2020.112716
  • 25. Jones RM. Mechanics of composite materials. Taylor & Francis, Inc. Philadelphia; 1999.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e565eb6-8540-4960-bf63-f50a64df0391
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.