PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of the AZ91 Laser Welded Joint

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plates of AZ91 magnesium alloy were butt-welded using a CO2 laser. The non-equilibrium solidification of the laser-melted metal caused fragmentation of the weld microstructure as well as the supersaturation of a solid solution of aluminium in magnesium, which enabled the T5 ageing of the weld. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens, both as-welded and post-weld T5 aged, fractured outside it. During the ageing of the supersaturated joint, which involved heat treating it to the T6 condition, the weld was the region where discontinuous precipitation was observed and this was the location of fracture in the tensile specimens. Thus, the strength properties of welded, supersaturated and aged AZ91 were much worse than when the non-welded material was T6 tempered.
Twórcy
  • Kielce University of Technology, Metals Science and Materials Technologies, 7 Tysiąclecia Państwa Polskiego Av., 25-314, Kielce, Poland
autor
  • Kielce University of Technology, Metals Science and Materials Technologies, 7 Tysiąclecia Państwa Polskiego Av., 25-314, Kielce, Poland
Bibliografia
  • [1] R.L. Edgar, Global overview on demand and application for magnesium alloys, in: K.U. Kainer (Ed.), Proceedings of the International Conference on Magnesium Alloys and Their Applications, Wiley-Vch. (2000).
  • [2] F. Pan, M. Yang, X. Chen, J. Mater. Sci. Technol. 32, 1211-1221 (2016).
  • [3] A. Luo, M.O. Pekguleryus, J. Mater. Sci. 29, 5259-5271 (1994).
  • [4] I.J. Polmear, Mater. Sci. Tech. 10, 1-16 (1994).
  • [5] C.H. Cáceres, D.M. Rovera, J. Light Metals. 1,151-156 (2001).
  • [6] M. Regev, E. Aghion, A. Rosen, R. Bamberger, Mater. Sci. Eng. A. 252, 6-16 (1998).
  • [7] G. Song, A.L. Bowles, D.H. StJohn, Mater. Sci. Eng. A. 366, 74-86 (2004).
  • [8] A. Munitz, C. Cotler, A. Stern, G. Kohn, Mater. Sci. Eng. A. 302, 68-73 (2001).
  • [9] T. Zhu, Z. W. Chen, W. Gao, Mater. Sci. Eng. A. 416, 246-252 (2006).
  • [10] J. Shen, G. You, S. Long, F. Pan, Mater. Charact. 59, 1059-1065 (2008).
  • [11] K.N. Braszczyńska-Malik, M. Mróz, J. Alloys Compd. 509, 9951-9958 (2011).
  • [12] M. Marya, G.R. Edwards, J. Mater. Eng. Perform. 10, 435-443 (2001).
  • [13] M. Dhahri, J.E. Masse, J.F. Mathieu, G. Barreau, M. Autric, Adv. Eng. Mater. 3, 504-507 (2001).
  • [14] X. Cao, M. Jahazi, J.P. Immarigeon, W. Wallace, J. Mater. Proc. Technol. 171, 188-204 (2006).
  • [15] K. Abderrazak, W.B. Salem, H. Mhiri, P. Bournot, M. Autric, Metall. Mater. Trans. B. 40, 54-61 (2009).
  • [16] M. Wahba, M. Mizutani, Y. Kawahito, S. Katayama, Mater. Design. 33, 569-576 (2012).
  • [17] Z. Yan, H. Zhang, J. Duan, F. Liu, G. Wang, J. Wuhan University of Technology-Mater. Sci. Ed. 32, 1205-1212 (2017).
  • [18] S. Fukumoto, D. Yamamoto, T. Tomita, K. Okita, H. Tsubakino, A. Yamamoto, Mater. Trans. 48, 44-52 (2007).
  • [19] X. Wang, J. Zhang, Chem. Eng. Trans. 66, 367-372 (2018).
  • [20] A.H. Feng, Z.Y. Ma, Acta Mater. 57, 4248-4260 (2009).
  • [21] T.C. Tsai, C.C. Chou, D.M. Tsai, K.T. Chiang, Mater Design. 32, 4187-4194 (2011).
  • [22] J. Dai, J. Huang, M. Li, Z. Li, J. Dong, Y. Wu, Mater. Sci. Eng. A. 529, 401-405 (2011).
  • [23] L. Wang, J. Huang, J. Dong, K. Feng, Y. Wu, P.K. Chu, Mater. Charact. 118, 486-493 (2016).
  • [24] L. Wang, J. Huang, J. Dong, Z. Li, Y. Wu, Weld World. 61, 299-306 (2017).
  • [25] D. Duly, J.P. Simon, Y. Brechet, Acta Metall. Mater. 43, 101-106 (1995).
  • [26] S. Celotto, T.J. Bastow, Acta Mater. 49, 41-51 (2001).
  • [27] M.X. Zhang, P.M. Kelly, Scripta Mater. 48, 647-652 (2003).
  • [28] K.N. Braszczyńska-Malik, J. Alloys Compd. 477, 870-876 (2009).
  • [29] A. Dziadoń, E. Musiał, Arch. Foundry Eng. 20 (3) 9-14 (2020).
  • [30] M.M. Avedesian, H. Baker, Heat treating, in: M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys. ASM International (1999).
  • [31] Landolt-Börstein, Numerical data and functional relationships in science and technology, New series, Group IV: Physical chemistry, Phase equilibria, Crystallographic and thermodynamic data of binary alloys. Berlin, Springer-Verlag (1998).
  • [32] N.C. Santhi Srinivas, V.V. Kutumbarao, Scripta Mater. 37, 285-291 (1997).
  • [33] A. Dziadoń, J. Maurer, Arch. Metall. 43,363-374 (1998).
  • [34] J. Ragani, P. Donnadieu, C. Tassin, J.J. Blandin, Scripta Mater. 65, 253-256 (2011).
  • [35] H.N. Mathur, V. Maier-Kiener, S. Korte-Kerzel, Acta Mater. 113, 221-229 (2016).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e51f0a0-ed03-4a8f-b46a-26e76790d9a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.