PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The relationship between bicycle traffic and the development of bicycle infrastructure on the example of Warsaw

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the relationship between the intensity of bicycle traffic volume and the development of bicycle infrastructure on the example of Warsaw. There has been a big increase in cycling over the last decade. At the same time, the linear and point bicycle infrastructure developed very strongly. Similar trends are also observed in other cities in Poland. The article presents the types of infrastructure available to cyclists. Then, the method of assessing the bicycle infrastructure is presented, taking into account the five features of good bicycle infrastructure: cohesion, directness, attractiveness, safety and comfort. In terms of coherence, the analysis covered the bicycle infrastructure network in the vicinity of the measurement site. The directness was tested by checking the accessibility of several dozen of the most important nodal points of the city's communication network. The attractiveness was examined by checking the availability of public bike stations, bicycle racks and bike-sharing stations. The infrastructure adjusted to the technical class of the road was adopted as a measure of safety. The comfort was checked by analyzing the quality of the road surface, which affects the driving comfort and energy expenditure. All the factors presented impact the cyclist's assessment of the infrastructure. To standardize the assessment rules, an aggregate index of the development of bicycle infrastructure was determined. The analysis was carried out for 10 sample points for four consecutive years. The points were characterized by different bicycle infrastructure, location in the city road network and different results of bicycle traffic measurements. The analysis showed a strong positive relationship between traffic and cycling infrastructure for most of the analyzed places. There was a negative dependence in the case of the construction of alternative routes in relation to the place of traffic measurements. The obtained results are the same as in the works of other authors. However, the effects of work do not allow to determine which of the examined factors is the cause and which is the effect but only show the existing relationship.
Rocznik
Strony
187--203
Opis fizyczny
Bibliogr. 65 poz., rys., tab., wykr., mapy
Twórcy
  • Warsaw University of Technology, Faculty of Transport, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Transport, Warsaw, Poland
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Gliwice, Poland
  • Public Roads Authority of Warsaw, Department of Sustainable Mobility, Warsaw, Poland
  • University of Zagreb, Faculty of Transport and Traffic Sciences, Zagreb, Croatia
Bibliografia
  • [1] Aldred, R., & Dales, J. (2017). Diversifying and normalising cycling in London, UK: An exploratory study on the influence of infrastructure. Journal of Transport & Health, 4, 348–362. https://doi.org/10.1016/j.jth.2016.11.002.
  • [2] Arellana, J., Saltarín, M., Larrañaga, A. M., González, V. I., & Henao, C. A. (2020). Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments. Transportation Research Part A: Policy and Practice, 139, 310–334. https://doi.org/10.1016/j.tra.2020.07.010.
  • [3] Bartuska, L., Hanzl, J., & Lizbetinova, L. (2016). Possibilities of Using the Data for Planning the Cycling Infrastructure. Procedia Engineering, 161, 282–289. https://doi.org/10.1016/j.proeng.2016.08.555.
  • [4] Basu, S., & Vasudevan, V. (2013). Effect of Bicycle Friendly Roadway Infrastructure on Bicycling Activities in Urban India. Procedia - Social and Behavioral Sciences, 104, 1139–1148. https://doi.org/10.1016/j.sbspro.2013.11.210.
  • [5] Bauer, M., Okraszewska, R., & Richter, M. (2021). Analysis of the causes and effects of cyclist-pedestrian accidents in biggest polish cities. Archives of Transport, 58(2), 115-135. https://doi.org/10.5604/01.3001.0014.8970.
  • [6] Bąk, R., Chodur, J., & Stamatiadis, N. (2021). Type II dilemma zone at high-speed signalized intersections in Poland. In Archives of Civil Engineering (No 3; Vol. 67, Issue No 3, pp. 673–685). Warsaw University of Technology Faculty of Civil Engineering and Committee for Civil Engineering Polish Academy of Sciences.
  • [7] BDiK, (2010). Standardy projektowe i wykonawcze dla systemu rowerowego w m. St. Warszawie. Załącznik do Zarządzenia nr 5523/2010 Prezydenta m.st. Warszawy z dnia 18.11.2010. Biuro Drogownictwa i Komunikacji Urzędu Miasta Stołecznego Warszawy. https://um.warszawa.pl/documents/61166/28680372/Standardy+rowerowe+Warszawa.pdf
  • [8] Billot-Grasset, A., Amoros, E., & Hours, M. (2016). How cyclist behavior affects bicycle accident configurations? Transportation Research Part F: Traffic Psychology and Behaviour, 41, 261–276. https://doi.org/10.1016/j.trf.2015.10.007.
  • [9] Błaszczak, J., Dąbrowa, A., Kosmowski, P., Pieńkos, M., Przytulska, M., Rybczyńska-Ejchorszt, M., & Kurowska-Pysz, J. (2016). Warszawski raport rowerowy 2016. Biuro Polityki Mobilności i Transportu Urzędu m.st. Warszawy. https://um.warszawa.pl/documents/62470/26637848/, 14.11.2021.
  • [10] Branion-Calles, M., Nelson, T., Fuller, D., Gauvin, L., & Winters, M. (2019). Associations between individual characteristics, availability of bicycle infrastructure, and city-wide safety perceptions of bicycling: A cross-sectional survey of bicyclists in 6 Canadian and U.S. cities. Transportation Research Part A: Policy and Practice, 123, 229–239. https://doi.org/10.1016/j.tra.2018.10.024.
  • [11] Brzeziński, A., Dąbrowa, A., Kosmowski, P., Pieńkos, M., Przytulska, M., Rezwow-Mosakowska, M., Rogala, A., & Szymański, Ł. (2015). Warszawski raport rowerowy 2015. Biuro Drogownictwa i Komunikacji Urzędu m.st. Warszawy. https://um.warszawa.pl/documents/62470/26637848/, (14.11.2021).
  • [12] Buciak, R., Krajewska, K., & Pawłowska, M. (2017). Warszawski pomiar ruchu rowerowego 2017. Zielone Mazowsze. https://um.warszawa.pl/documents/61166/6599671/Warszawski_Pomiar_Ruchu_Rowerowego_2017.pdf/, 14.11.2021.
  • [13] Buciak, R., Krajewska, K., & Sulmicki, M. (2016). Warszawski pomiar ruchu rowerowego 2016. Zielone Mazowsze. https://um.warszawa.pl/documents/61166/26630400/WPRR2016_popr.pdf/, 14.11.2021.
  • [14] Buda, M., Bronowska, O., Górka, A., & Krukowicz, T. (2017). Prędkości rowerzystów na wydzielonych drogach rowerowych. Autobusy : technika, eksploatacja, systemy transportowe, R. 18, nr 12.
  • [15] Calvey, J. C., Shackleton, J. P., Taylor, M. D., & Llewellyn, R. (2015). Engineering condition assessment of cycling infrastructure: Cyclists’ perceptions of satisfaction and comfort. Transportation Research Part A: Policy and Practice, 78, 134–143. https://doi.org/10.1016/j.tra.2015.04.031.
  • [16] Caulfield, B., Brick, E., & McCarthy, O. T. (2012). Determining bicycle infrastructure preferences – A case study of Dublin. Transportation Research Part D: Transport and Environment, 17(5), 413–417. https://doi.org/10.1016/j.trd.2012.04.001.
  • [17] Cieśla, K., Krukowicz, T., & Firląg, K. (2018). Analysis of cyclists’ behaviour on different infrastructure elements. MATEC Web of Conferences, 231, 03001. https://doi.org/10.1051/matec-conf/201823103001.
  • [18] Crane, M., Rissel, C., Greaves, S., Standen, C., & Ming Wen, L. (2016). Neighbourhood expectations and engagement with new cycling infrastructure in Sydney, Australia: Findings from a mixed method before-and-after study. Journal of Transport & Health, 3(1), 48–60. https://doi.org/10.1016/j.jth.2015.10.003.
  • [19] CROW, (1993). Sign up for the bike. Design manual for a cycle-friendly infrastructure. C.R.O.W.
  • [20] Cruz, R., Bandeira, J., Vilaça, M., Rodrigues, M., Fernandes, J. M., & Coelho, M. (2020). Introducing new criteria to support cycling navigation and infrastructure planning in flat and hilly cities. Transportation Research Procedia, 47, 75–82. https://doi.org/10.1016/j.trpro.2020.03.081.
  • [21] Czajkowski, M., Dąbrowa, A., Kosmowski, P., Pieńkos, M., Przytulska, M., & Rytel, K. (2014). Warszawski raport rowerowy 2014. Biuro Drogownictwa i Komunikacji Urzędu m.st. Warszawy. https://um.warszawa.pl/documents/62470/26637848/, 14.11.2021.
  • [22] Deloitte, (2018). The Deloitte City Mobility Index. Gauging global readiness for the future of mobility. Deloitte MCS Limited. https://www2.deloitte.com.
  • [23] DiGioia, J., Watkins, K. E., Xu, Y., Rodgers, M., & Guensler, R. (2017). Safety impacts of bicycle infrastructure: A critical review. Journal of Safety Research, 61, 105–119. https://doi.org/10.1016/j.jsr.2017.02.015.
  • [24] Dudek, D., & Ostaszewski, P. (2020). Pomiary ruchu rowerowego 2020. SIMRUN P. Ostaszewski Spółka Jawna. https://zdm.waw.pl/wp-content/uploads/2020/11/Pomiary-ruchu-rowerowego-2020-w-Warszawie-raport.pdf, 14.11.2021.
  • [25] Flanagan, E., Lachapelle, U., & El-Geneidy, A. (2016). Riding tandem: Does cycling infrastructure investment mirror gentrification and privilege in Portland, OR and Chicago, IL? Research in Transportation Economics, 60, 14–24. https://doi.org/10.1016/j.retrec.2016.07.027.
  • [26] Garrard, J., Rose, G., & Lo, S. K. (2008). Promoting transportation cycling for women: The role of bicycle infrastructure. Preventive Medicine, 46(1), 55–59. https://doi.org/10.1016/j.ypmed.2007.07.010.
  • [27] Gołębiowska, A., Rossa, B., Dembek, M., Jankowska, A., & Kosmowski, P. (2017). Warszawski raport rowerowy 2017. Biuro Polityki Mobilności i Transportu Urzędu m.st. Warszawy. https://um.warszawa.pl/documents/, 14.11.2021.
  • [28] Górecki, M., Mantorska, E., Pieńkoś, M., & Rossa, B. (2020). Warszawski raport rowerowy 2020. Zarząd Dróg Miejskich w Warszawie. https://um.warszawa.pl/documents/, 14.11.2021.
  • [29] Götschi, T., Castro, A., Deforth, M., Miranda-Moreno, L., & Zangenehpour, S. (2018). Towards a comprehensive safety evaluation of cycling infrastructure including objective and subjective measures. Journal of Transport & Health, 8, 44–54. https://doi.org/10.1016/j.jth.2017.12.003.
  • [30] Heesch, K. C., James, B., Washington, T. L., Zuniga, K., & Burke, M. (2016). Evaluation of the Veloway 1: A natural experiment of new bicycle infrastructure in Brisbane, Australia. Journal of Transport & Health, 3(3), 366–376. https://doi.org/10.1016/j.jth.2016.06.006.
  • [31] Jacyna, M., Żochowska, R., Sobota, A., & Wasiak, M. (2021). Scenario Analyses of Exhaust Emissions Reduction through the Introduction of Electric Vehicles into the City. Energies, 14(7), 2030. https://doi.org/10.3390/en14072030.
  • [32] Kapousizis, G., Goodman, A., & Aldred, R. (2021). Cycling injury risk in Britain: A case-crossover study of infrastructural and route environment correlates. Accident Analysis & Prevention, 154, 106063. https://doi.org/10.1016/j.aap.2021.106063.
  • [33] Kołodziej, T. (2018). Wpływ rozwoju infrastruktury rowerowej na ruch rowerowy w Warszawie. Master's thesis. Warsaw: Warsaw University of Technology.
  • [34] Lachapelle, U., & Cloutier, M.-S. (2017). On the complexity of finishing a crossing on time: Elderly pedestrians, timing and cycling infrastructure. Transportation Research Part A: Policy and Practice, 96, 54–63. https://doi.org/10.1016/j.tra.2016.12.005.
  • [35] Makarova, I., Boyko, A., & Almetova, Z. (2020). Decision-making on development of cycling infrastructure through safety assessment at design and operation stages. Transportation Research Procedia, 50, 397–404. https://doi.org/10.1016/j.trpro.2020.10.047.
  • [36] Marqués, R., Hernández-Herrador, V., Calvo-Salazar, M., & García-Cebrián, J. A. (2015). How infrastructure can promote cycling in cities: Lessons from Seville. Research in Transportation Economics, 53, 31–44. https://doi.org/10.1016/j.retrec.2015.10.017.
  • [37] Márquez, L., & Soto, J. J. (2021). Integrating perceptions of safety and bicycle theft risk in the analysis of cycling infrastructure preferences. Transportation Research Part A: Policy and Practice, 150, 285–301. https://doi.org/10.1016/j.tra.2021.06.017.
  • [38] Miller, S., & Coutts, C. (2018). A multiple case study of local & creative financing of bicycle and pedestrian infrastructure. Case Studies on Transport Policy, 6(2), 257–264. https://doi.org/10.1016/j.cstp.2018.03.008.
  • [39] Modinpuroju, A., & Prasad, C. (2017). Design optimal rural road network using GIS. Archives of Transport, 41(1), 63-71. https://doi.org/10.5604/01.3001.0009.7387.
  • [40] Ng, A., Debnath, A. K., & Heesch, K. C. (2017). Cyclist’ safety perceptions of cycling infrastructure at un-signalised intersections: Cross-sectional survey of Queensland cyclists. Journal of Transport & Health, 6, 13–22. https://doi.org/10.1016/j.jth.2017.03.001.
  • [41] Olmos, L. E., Tadeo, M. S., Vlachogiannis, D., Alhasoun, F., Espinet Alegre, X., Ochoa, C., Targa, F., & González, M. C. (2020). A data science framework for planning the growth of bi-cycle infrastructures. Transportation Research Part C: Emerging Technologies, 115, 102640. https://doi.org/10.1016/j.trc.2020.102640.
  • [42] Ostrowski, K., & Tracz, M. (2019). Availability and reliability of a signalised lane. Transport-metrica B: Transport Dynamics, 7(1), 1044–1061. https://doi.org/10.1080/21680566.2018.1547229
  • [43] Pazdan, S. (2020). The impact of weather on bicycle risk exposure. Archives of Transport, 56(4), 89-105. https://doi.org/10.5604/01.3001.0014.5629.
  • [44] Pistoll, C., & Goodman, A. (2014). The link between socioeconomic position, access to cycling infrastructure and cycling participation rates: An ecological study in Melbourne, Australia. Journal of Transport & Health, 1(4), 251–259. https://doi.org/10.1016/j.jth.2014.09.011.
  • [45] Pritchard, R., Bucher, D., & Frøyen, Y. (2019). Does new bicycle infrastructure result in new or rerouted bicyclists? A longitudinal GPS study in Oslo. Journal of Transport Geography, 77, 113–125. https://doi.org/10.1016/j.jtrangeo.2019.05.005.
  • [46] PRRW, (2015). Pomiary ruchu rowerowego w Warszawie 2015. Polska Inżynieria sp. z o.o. https://um.warszawa.pl/documents/61166/6599671/.
  • [47] Pucher, J., Dill, J., & Handy, S. (2010). Infrastructure, programs, and policies to increase bicycling: An international review. Preventive Medicine, 50, S106–S125. https://doi.org/10.1016/j.ypmed.2009.07.028.
  • [48] Rahul, T. M., & Verma, A. (2018). Sustainability analysis of pedestrian and cycling infrastructure – a case study for Bangalore. Case Studies on Transport Policy, 6(4), 483–493. https://doi.org/10.1016/j.cstp.2018.06.001.
  • [49] Rich, J., Jensen, A. F., Pilegaard, N., & Hallberg, M. (2021). Cost-benefit of bicycle infrastructure with e-bikes and cycle superhighways. Case Studies on Transport Policy, 9(2), 608–615. https://doi.org/10.1016/j.cstp.2021.02.015.
  • [50] Robartes, E., Chen, E., Chen, T. D., & Ohlms, P. B. (2021). Assessment of local, state, and federal barriers to implementing bicycle infrastructure: A Virginia case study. Case Studies on Transport Policy, 9(2), 488–496. https://doi.org/10.1016/j.cstp.2021.02.004.
  • [51] Serwis Mapowy Urzędu m. st. Warszawy. (2021). mapa.um.warszawa.pl, 14.12.2021.
  • [52] Song, Y., Preston, J., & Ogilvie, D. (2017). New walking and cycling infrastructure and modal shift in the UK: A quasi-experimental panel study. Transportation Research Part A: Policy and Practice, 95, 320–333. https://doi.org/10.1016/j.tra.2016.11.017.
  • [53] Teixeira, I. P., Rodrigues da Silva, A. N., Schwanen, T., Manzato, G. G., Dörrzapf, L., Zeile, P., Dekoninck, L., & Botteldooren, D. (2020). Does cycling infrastructure reduce stress biomarkers in commuting cyclists? A comparison of five European cities. Journal of Transport Geography, 88, 102830. https://doi.org/10.1016/j.jtrangeo.2020.102830.
  • [54] Thompson, J., Wijnands, J. S., Savino, G., Lawrence, B., & Stevenson, M. (2017). Estimating the safety benefit of separated cycling infrastructure adjusted for behavioral adaptation among drivers; an application of agent-based modelling. Transportation Research Part F: Traffic Psychology and Behaviour, 49, 18–28. https://doi.org/10.1016/j.trf.2017.05.006.
  • [55] Trofimenko, Y., & Shashina, E. (2017). Methodology and Results of Assessing Safety of Bicycle Infrastructure in Russian Cities. Transportation Research Procedia, 20, 653–658. https://doi.org/10.1016/j.trpro.2017.01.106.
  • [56] Vallejo-Borda, J. A., Rosas-Satizábal, D., & Rodriguez-Valencia, A. (2020). Do attitudes and perceptions help to explain cycling infrastructure quality of service? Transportation Research Part D: Transport and Environment, 87, 102539. https://doi.org/10.1016/j.trd.2020.102539.
  • [57] van Goeverden, K., Nielsen, T. S., Harder, H., & van Nes, R. (2015). Interventions in Bicycle Infrastructure, Lessons from Dutch and Danish Cases. Transportation Research Procedia, 10, 403–412. https://doi.org/10.1016/j.trpro.2015.09.090.
  • [58] Wardlaw, M. J. (2014). History, risk, infrastructure: Perspectives on bicycling in the Netherlands and the UK. Journal of Transport & Health, 1(4), 243–250. https://doi.org/10.1016/j.jth.2014.09.015.
  • [59] WPRR, (2014). Warszawski pomiar ruchu rowerowego 2014. Stowarzyszenie Zielone Mazowsze. https://um.warszawa.pl/documents/61166/26630400/WPRR-2014-tekst.pdf/, 14.11.2021.
  • [60] Wasilewska, M., Gierasimiuk, P., Motylewicz, M. (2019). Ocena właściwości przeciwpoślizgowych i równości podłużnej dróg gminnych wykonanych w technologii CCR. MATERIAŁY BUDOWLANE, 1(4), 49–50. https://doi.org/10.15199/33.2019.04.06.
  • [61] Wilson, A., & Mitra, R. (2020). Implementing cycling infrastructure in a politicized space: Lessons from Toronto, Canada. Journal of Transport Geography, 86, 102760. https://doi.org/10.1016/j.jtrangeo.2020.102760.
  • [62] Zahabi, S. A. H., Chang, A., Miranda-Moreno, L. F., & Patterson, Z. (2016). Exploring the link between the neighborhood typologies, bicycle infrastructure and commuting cycling over time and the potential impact on commuter GHG emissions. Transportation Research Part D: Transport and Environment, 47, 89–103. https://doi.org/10.1016/j.trd.2016.05.008.
  • [63] Zhao, C., Carstensen, T. A., Nielsen, T. A. S., & Olafsson, A. S. (2018). Bicycle-friendly infrastructure planning in Beijing and Copenhagen - Between adapting design solutions and learning local planning cultures. Journal of Transport Geography, 68, 149–159. https://doi.org/10.1016/j.jtrangeo.2018.03.003.
  • [64] Żochowska, R., Jacyna, M., Kłos, M. J., & Soczówka, P. (2021). A GIS-Based Method of the Assessment of Spatial Integration of Bike-Sharing Stations. Sustainability, 13(7), 3894. https://doi.org/10.3390/su13073894.
  • [65] Żochowska, R., Karoń, G., Janecki, R., & Sobota, A. (2018). Selected Aspects of the Methodology of Traffic Flows Surveys and Measurements on an Urban Agglomeration Scale with Regard to ITS Projects. Lecture Notes in Net-works and Systems, 21, 37–49.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e50a4c1-43d9-436a-828e-38800e1bf9e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.