PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a nonlocal p(x)-Laplacian Dirichlet problem involving several critical Sobolev-Hardy exponents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to present a result of multiplicity of solutions, in generalized Sobolev spaces, for a non-local elliptic problem with p(x)-Laplace operator containing k distinct critical Sobolev–Hardy exponents combined with singularity points [formula] where Ω ⊂ RN is a bounded domain with 0 ∈ Ω and 1 < p− ≤ p(x) ≤ p+ < N. The real function M is bounded in [0,+∞) and the functions hi (i = 1, . . . , k) and f are functions whose properties will be given later. To obtain the result we use the Lions’ concentration-compactness principle for critical Sobolev–Hardy exponent in the space W 0 1,p(x) (Ω) due to Yu, Fu and Li, and the Fountain Theorem.
Rocznik
Strony
789--814
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Universidade Federal do Pará (UFPA), Instituto de Ciências Exatas e Naturais, R. Augusto Corrêa, 01 – Guamá, CEP 66075-110, Belém, PA, Brasil
  • Universidade Federal do Pará (UFPA), Instituto de Ciências Exatas e Naturais, R. Augusto Corrêa, 01 – Guamá, CEP 66075-110, Belém, PA, Brasil
Bibliografia
  • [1] E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213–259.
  • [2] E. Acerbi, G. Mingione, G.A. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids, Ann. Inst. H. Poincaré C Anal. Non Linéaire 21 (2004), no. 1, 25–60.
  • [3] J.F. Bonder, N. Saintier, A. Silva, On the Sobolev trace theorem for variable exponent spaces in the critical range, Ann. Mat. Pura Appl. (4) 193 (2014), no. 6, 1607–1628.
  • [4] J.F. Bonder, N. Saintier, A. Silva, Existence of solution to a critical trace equation with variable exponent, Asymptot. Anal. 93 (2015), no. 1–2, 161–185.
  • [5] J.F. Bonder, A. Silva, The concentration-compactness principle for variable exponent spaces and applications, Electron. J. Differential Equations 141 (2010), 1–18.
  • [6] D. Cao, P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potencial, J. Differential Equations 205 (2004), no. 2, 521–537.
  • [7] D. Cao, S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations 193 (2003), no. 2, 424–434.
  • [8] F.J.S.A. Corrêa, A.C.R. Costa, A variational approach for a bi-nonlocal elliptic problem involving the p(x)-Laplacian and nonlinearity with nonstandard growth, Glasg. Math. J. 56 (2014), 317-333.
  • [9] L. Diening, Riesz potential and Sobolev embeddings on generalized Lesbegue and Sobolev spaces Lp(x) and Wk,p(x), Math. Nachr. 268 (2004), 31–43.
  • [10] X.L. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005), no. 2, 464–477.
  • [11] X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852.
  • [12] X.L. Fan, D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424–446.
  • [13] X.L. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk,p(x)(Ω), J. Math. Anal. Appl. 262 (2001), no. 2, 749–760.
  • [14] A. Ferrero, F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations 177 (2001), no. 2, 494–522.
  • [15] Y. Fu, The existence of solutions for elliptic systems with nonuniform growth, Studia Math. 151 (2002), 227–246.
  • [16] Y. Fu, The principle of concentration compactness in Lp(x) spaces and its application, Nonlinear Anal. 71 (2009), no. 5–6, 1876–1892.
  • [17] N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5703–5743.
  • [18] E. Jannelli, The role played by space dimension in elliptic critical problems, J. Differential Equations 156 (1999), 407–426.
  • [19] D. Kang, Solutions of the quasilinear elliptic problem with a critical Sobolev–Hardy exponent and a Hardy-type term, J. Math. Anal. Appl. 341 (2008), 764–782.
  • [20] D. Kang, S. Peng, Existence of solutions for elliptic equations with critical Sobolev–Hardy exponents, Nonlinear Anal. 56 (2004), 1151–1164.
  • [21] D. Kang, S. Peng, Positive solutions for singular critical elliptic problems, Appl. Math. Lett. 17 (2004), 411–416.
  • [22] D. Kang, S. Peng, Sign-changing solutions for elliptic problems with critical Sobolev–Hardy exponents, J. Math. Anal. Appl. 291 (2004), 488–499.
  • [23] D. Kang, S. Peng, Solutions for semilinear elliptic problems with critical Sobolev–Hardy exponents and Hardy potential, Appl. Math. Lett. 18 (2005), 1094–1100.
  • [24] O. Kováčik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41 (1991), no. 4, 592–618.
  • [25] W. Krawcewicz, W. Marzantowicz, Some remarks on the Lusternik–Schnirelman method for nondifferentiable functionals invariant with respect to a finite group action, Rocky Mountain J. Math. 20 (1990), no. 4, 1041–1049.
  • [26] Y.Y. Li, C.S. Lin, A nonlinear elliptic PDE with two Sobolev–Hardy critical exponents, Arch. Ration. Mech. Anal. 203 (2012), 943–968.
  • [27] M. Mihăilescu, V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2073, 2625–2641.
  • [28] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000.
  • [29] G. Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent, Differential Integral Equations 5 (1992), no. 1, 25–42.
  • [30] Y. Mei, F. Yongqiang, L.Wang, Existence of solutions for the p(x)-Laplacian problem with the critical Sobolev–Hardy exponent, Abstr. Appl. Anal. 2012 (2012), Article ID 894925.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e508071-a7e3-4e06-9a2c-9f1b9add49f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.