PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Continuous Growth of Bulk Si by Temperature Gradient Zone Melting Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Temperature gradient zone melting (TGZM) method was used to obtain bulk Si continuously for the efficient separation and purification of primary Si from the Si-Al alloy in this work. The effects of alloy thickness, temperature gradient and holding time in TGZM purification technology were investigated. Finally, the continuous growth of bulk Si without eutectic inclusions was obtained. The results showed that the growth rate of bulk Si was independent of the liquid zone thickness. When the temperature gradient was changed from 2.48 K/mm to 3.97 K/mm, the growth rate of bulk Si was enhanced from 7.9×10-5 mm/s to 2.47×10-4 mm/s, which was increased by about 3 times. The bulk Si could grow continuously and the growth rate was decreased with the increase of holding time from 1 h to 5 h. Meanwhile, low refining temperature was beneficial to the removal of impurities. With a precipitation temperature of 1460 K and a temperature gradient of 2.48 K/mm, the removal rates of Fe, P and B were 99.8%, 94.0% and 63.6%, respectively.
Słowa kluczowe
Twórcy
autor
  • Dalian University of Technology, School of Materials Science and Engineering, Dalian 116024, China
  • Dalian University of Technology, Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116024, China
autor
  • Dalian University of Technology, School of Materials Science and Engineering, Dalian 116024, China
  • Dalian University of Technology, Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116024, China
autor
  • Dalian University of Technology, School of Materials Science and Engineering, Dalian 116024, China
  • Dalian University of Technology, Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116024, China
autor
  • Dalian University of Technology, School of Materials Science and Engineering, Dalian 116024, China
  • Dalian University of Technology, Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116024, China
autor
  • Dalian University of Technology, School of Materials Science and Engineering, Dalian 116024, China
  • Dalian University of Technology, Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116024, China
Bibliografia
  • [1] J. Chung, J. Kim, B. Jang, Y. Ahn, H. Lee, W. Yoon, Sol. Energ. Mat. Sol. C. 95 (1), 45-48 (2011).
  • [2] S. Esfahani, M. Barati, Met. Mater. Int. 17 (6), 1009-1015 (2011).
  • [3] L. K. Jakobsson, M. Tangstad, Metall. Mater. Trans. A 46 (2), 595-605 (2015).
  • [4] L. T. Khajavi, K. Morita, T. Yoshikawa, M. Barati, J. Alloy. Compd. 619, 634-638(2015).
  • [5] J. W. Li, Z. Guo, J. Cryst. Growth. 394 (10), 18-23(2014).
  • [6] T. Yoshikawa, K. Morita, J. Cryst. Growth. 311 (3), 776-779 (2009).
  • [7] J. Y. Li, P. Ni, L. Wang, Y. Tan, Mat. Sci. Semicon. Proc. 61, 79-84 (2017).
  • [8] T. Yoshikawa, K. Morita, S. Kawanishi, et al, J. Alloy. Compd. 490 (1-2), 31-41 (2010).
  • [9] T. Yoshikawa, K. Morita, Sci. Technol. Adv. Mat. 4 (6), 531-537 (2003).
  • [10] T. Yoshikawa, K. Morita. ISIJ Int. 45 (7), 967-971 (2005).
  • [11] T. Yoshikawa, K. Morita. J. Cryst. Growth. 311 (3), 776-779 (2009).
  • [12] Y. Q. Li, Y. Tan, P. P. Cao, J. Li, P. J. Jia, Y. Liu, Mater. Res. Innov. 19 (2), 81-85 (2015).
  • [13] H. F. Lu, K. X Wei, W. H. Ma. K. Q. Xie, J. J. Wu, Y. Lei, Y. N. Dai, Mater. Rev. 29 (8A), 90-97 (2015).
  • [14] L. Q. Huang, H. X. Lai, C. H. Lu, M. Fang, W. H. Ma, P. F. Xing, J. T. Li, X. T. Luo Hydrometallurgy 161, 14-21(2016).
  • [15] Q. C. Zou, J. C. Jie, T. M. Wang, T. J. Li, Mater. Lett. 185, 59-62 (2016).
  • [16] T. Yoshikawa, K. Morita, ISIJ. Int. 47 (4), 582-584 (2007).
  • [17] Y. H. Zhang, X. C. Miao, Z. Y. Shen, Q. Y. Han, C. J. Song, Q. J. Zhai, Acta. Mater. 97, 357-366 (2015).
  • [18] J. W. Li, Z. C. Guo, J. C. Li, L. Z. Yu, Silicon. 7 (3), 1-8 (2014).
  • [19] X. Gu, X. Yu, D. Yang, Sep. Purif. Technol. 77 (1), 33-39 (2011).
  • [20] J. Chung, C. Lee, J. Lee, W. Yoon, Sep. Sci. Technol. 48 (15), 2345-23514 (2013).
  • [21] P. P. Wang, H. M. Lu, Y. S. Lai, J. Cryst. Growth. 390, 96-100 (2014).
  • [22] Y. Nishi, Y. Kang, K. Morita, Mater. Trans. 51 (7), 1227-1230 (2010).
  • [23] X. D. Ma, T. Yoshikawa, K. Morita, J. Cryst. Growth. 377 (2013), 192-196.
  • [24] L. F. Zhang, Y. S. Ma, Y. Q. Li. Mat. Sci. Semicon. Proc. 71, 12-19 (2017).
  • [25] W. G. Pfann, A. Chem, Anal. Chem. 36 (12), 2231-2234 (1964).
  • [26] V. N. Lozovskii, V. P. Popov, Prog. Cryst. Growth & Charact. 6, 1-23 (1983).
  • [27] J. Y. Li, L. Wang, P. Ni, Y. Tan. Mat. Sci. Semicon. Proc. 66, 170-175 (2017).
  • [28] W. A. Tiller, J. Appl. Phys. 34 (9), 2757-2762 (1963).
  • [29] Z. Ebrahimi, Arch. Metall. & Mater. 62 (4), 1969-1981 (2017).
  • [30] H. E. Cline, T. R. Anthony, J. Appl. Phys. 43, 4391-4395 (1972).
Uwagi
EN
1. This program is financially supported by National Natural Science Fundation of China (Grant No. 51574057).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e4b1a19-251e-4fcd-8291-d7240d42713e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.