PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability and failure of thin-walled composite structures with a square cross-section

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the analysis of the stability and load-carrying capacity of thin-walled composite profiles in compression. The specimens reflect elements made of carbon fibre reinforced laminate (CFRP). Thin-walled columns with a square cross-section were made from 4 layers of composite in 3 different combinations of layer arrangements. Advanced numerical analyses have been carried out. In the first stage of the study, a buckling analysis of the structure was performed. In further numerical simulations, two advanced models were used simultaneously: the Progressive Failure Analysis (PFA) and the Cohesive Zone Model (CZM). The results showed significant differences between the critical load values for each layer configuration. The forms of buckling and the areas of damage initiation and evolution were also dependent on the applied layup.
Rocznik
Strony
43--55
Opis fizyczny
Bibliogr. 19 poz., fig., tab.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin, Poland
Bibliografia
  • [1] Abrate, S. (1998). Impact on Composite Structures. Cambridge University Press.
  • [2] Berardi, V. P., Perrella, M., Feo, L., & Cricri, G. (2017). Creep behavior of GFRP laminates and their phases: Experimental investigation and analytical modelling. Composites Part B: Engineering, 122, 136–144. https://doi.org/10.1016/j.compositesb.2017.04.015
  • [3] Camanho, P. P., & Matthews, F. L. (1999). A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates. Journal of Composite Materials, 33(24), 2248–2280. https://doi.org/10.1177%2F002199839903302402
  • [4] Campbell, F. C. (2004). Manufacturing Processes for Advanced Composites. Elsevier B.V.
  • [5] Campbell, F. C. (2006). Manufacturing Technology for Aerospace Structural Materials. Elsevier Ltd.
  • [6] Chung, D. D. L. (1994). Carbon Fiber Composites. Elsevier Inc.
  • [7] Debski, H., Rozylo, P., Gliszczynski, A., & Kubiak, T. (2019). Numerical models for buckling, postbuckling and failure analysis of pre-damaged thin-walled composite struts subjected to uniform compression. Thin-Walled Structures, 139, 53–65. https://doi.org/10.1016/j.tws.2019.02.030
  • [8] Debski, H., Teter, A., Kubiak, T., & Samborski, S. (2016). Local buckling, post-buckling and collapse of thin-walled channel section composite columns subjected to quasi-static compression. Composite Structures, 136, 593–601. https://doi.org/10.1016/j.compstruct.2015.11.008
  • [9] Falkowicz, K., Mazurek, P., Rozylo, P., Wysmulski, P., & Smagowski, W. (2016). Experimental and numerical analysis of the compression thin-walled composite plate. Advances in Science and Technology Research Journal, 10(31), 177–184. https://doi.org/10.12913/22998624/64063
  • [10] Fascetti, A., Feo, L., Nisticò, N., & Penna, R. (2016). Web-flange behavior of pultruded GFRP I-beams: A lattice model for the interpretation of experimental results. Composites Part B: Engineering, 100, 257–269. https://doi.org/10.1016/j.compositesb.2016.06.058
  • [11] Freeman, W. T. (1993). The use of composites in aircraft primary structure. Composites Engineering, 3(7–8), 767–775. https://doi.org/10.1016/0961-9526(93)90095-2
  • [12] Koiter, W. (1963). Elastic Stability and Post Buckling Behavior in Nonlinear Problems. University of Wisconsin Press.
  • [13] Kubiak, T., Kolakowski, Z., Swinarski, J., Urbaniak, M., & Gliszczynski, A. (2016). Local buckling and post-buckling of composite channel-section beams – Numerical and experimental investigations. Composites Part B: Engineering, 91, 176–188. https://doi.org/10.1016/j.compositesb.2016.01.053
  • [14] Lapczyk, I., & Hurtado, J. A. (2007). Progressive damage modeling in fiber-reinforced materials. Composites Part A: Applied Science and Manufacturing, 38(11), 2333–2341. https://doi.org/10.1016/j.compositesa.2007.01.017
  • [15] Liu, P. F., Gu, Z. P., Peng, X. Q., & Zheng, J. Y. (2015). Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression. Composite Structures, 131, 975–986. https://doi.org/10.1016/j.compstruct.2015.06.058
  • [16] Paszkiewicz, M., & Kubiak, T. (2015). Selected problems concerning determination of the buckling load of channel section beams and columns. Thin-Walled Structures, 93, 112–121. https://doi.org/10.1016/j.tws.2015.03.009
  • [17] Rozylo, P., Debski, H., Wysmulski, P., & Falkowicz, K. (2018). Numerical and experimental failure analysis of thin-walled composite columns with a top-hat cross section under axial compression. Composite Structures, 204, 207–216. https://doi.org/10.1016/j.compstruct.2018.07.068
  • [18] Singer, J., Arbocz, J., & Weller, T. (1998). Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures, Volume 1: Basic Concepts, Columns, Beams and Plates. John Wiley & Sons Inc.
  • [19] Wysmulski, P., Debski, H., Rozylo, P., & Falkowicz, K. (2016). A study of stability and post-critical behaviour of thin-walled composite profiles under compression. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 18(4), 632–637. http://dx.doi.org/10.17531/ein.2016.4.19
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e494c67-35a4-402b-bbaf-468faa7a848c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.