Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Optymalizacja procesu syntezy jednofazowych materiałów LiFePO4 o nanometrycznych rozmiarach ziaren
Języki publikacji
Abstrakty
LiFePO4 samples were first prepared by a modified sol - gel process and then the resulting LiFePO4 xerogel was ground and calcined in a tube furnace in an inert atmosphere in nitrogen flow. The main goal of this research work which was lowering the temperature and the time of synthesis of LiFePO4 was achieved. It was confirmed that the material contains only a LiFePO4 triphylite phase and that the presence of carbon resulting from pyrolysis of initial carbonaceous reagents does not affect the crystalline structure of the material.
Próbki materiału LiFePO4 przygotowano zmodyfikowaną metodą zol - żel. Otrzymany kserożel został roztarty w moździerzu i kalcynowany w piecu rurowym w atmosferze ochronnej, w przepływie azotu. Główny cel pracy jakim było obniżenie temperatury i czasu trwania procesu, został osiągnięty. Potwierdzono, że materiał ten składa się tylko z tryfilitowej fazy LiFePO4. Dowiedziono, że węgiel obecny w próbce, pochodzący z rozkładu pirolitycznego wyjściowych soli organicznych nie wpływa na formowanie się fazy krystalicznej.
Czasopismo
Rocznik
Tom
Strony
4--8
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Institute of Electronic Materials Technology 133 Wólczynska Str., 01-919 Warsaw, Poland
- Faculty of Physics Warsaw University of Technology, Koszykowa 75, Warsaw, Poland
autor
- Institute of Electronic Materials Technology 133 Wólczynska Str., 01-919 Warsaw, Poland
autor
- Institute of Electronic Materials Technology 133 Wólczynska Str., 01-919 Warsaw, Poland
autor
- Faculty of Physics Warsaw University of Technology, Koszykowa 75, Warsaw, Poland
Bibliografia
- [1] Nanjundaswamy K., Padhi A., Goodenough J., Okada S., Ohtsuka H., Arai H., Yamaki J.: Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds, Solid State Ionics. 1996, 92 ,1 - 10
- [2] Padhi A., Nanjundaswamy K., Goodenough J.: Phospho-olivines as positive - electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, 144, 1188 - 1194
- [3] Goodenough J. B., Kim Y.: Challenges for rechargeable Li batteries, Chem. Mater., 2010, 22, 587 - 603
- [4] Takahashi M., Tobishima S., Takei K., Sakurai Y.: Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries, Solid State Ionics, 2002, 148, 283 - 289
- [5] Tarascon J. - M., Armand M.: Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414, 359 - 367
- [6] Delacourt C., Laffont L., Bouchet R., Wurm C., Leriche J. - B., Morcrette M., Tarascon J. - M., Masquelier C.: Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe , Mn) electrode materials, J. Electrochem. Soc., 2005, 152, A913 - A921
- [7] Chung S. Y., Bloking J. T., Chiang T. M.: Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater., 2002 ,1, 123 - 128
- [8] Wang G. X., Bewlay S. L., Konstantinov K., Liu H. K., Dou S. X., Ahn J. - H.: Physical and electrochemical properties of doped lithium iron phosphate electrodes, Electrochim. Acta, 2004, 50, 443 - 447
- [9] Göktepe H., Şahan H., Kılıç F., Patat Ş.: Improved of cathode performance of LiFePO4/C composite using different carboxylic acids as carbon sources for lithium-ion batteries, Ionics, 2010, 16, 203 - 208
- [10] Dhindsa K. S., Kumar A., Nazri G. A., Naik V. M., Garg V. K., Oliveira A. C., Vaishnava P. P., Zhou Z. X., Naik R.: Enhanced electrochemical performance of LiFePO4/C nanocomposites due to in situ formation of Fe2P impurities, J. Solid State Electrochem, 2016, 20, 2275 - 2282
- [11] Arifin M., Iskandar F., Aimon A. H., Munir M. M., Nuryadin B. W.: Synthesis of LiFePO4/Li2SiO3/reduced graphene oxide (rGO) composite via hydrothermal method, J. Phys.: Conference Series, 2016, 739 , 012087, 1 - 5
- [12] Xia Y., Zhang W., Huang H., Gan Y., Tian J., Tao X.: Self-assembled mesoporous LiFePO4 with hierarchical spindle-like architectures for high-performance lithium-ion batteries, J. Power Sources, 2011, 196, 5651 - 5658
- [13] Gaberscek M., Dominko R., Jamnik J.: Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes, Electrochem. Commun., 2007, 9, 2778 - 2783
- [14] Zaghib K., Charest P., Dontigny M., Guerfy A., Lagacé M., Mauger A., Kopeć M., Julien C. M.: LiFePO4: From molten ingot to nanoparticles with high-rate performance in Li-ion batteries, J. Power Sources, 2010, 195, 8280 - 8288
- [15] Chen J., Whittingham M. S.: Hydrothermal synthesis of lithium iron phosphate, Electrochem. Commun., 2006, 8, 855 - 858
- [16] Franger S., Le Cras F., Bourbon C., Rouanlt H.: Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties, J. Power Sources, 2003, 119 - 121, 252 - 257
- [17] Prosini P.: Iron phosphate materials as cathodes for lithium batteries, Springer-Verlag London Limited 2011, DOI: 10.1007/978-0-85729-745-7_1
- [18] Aksienionek M., Michalska M., Wasiucionek M., Lipińska L., Mirkowska M., Gierlotka S.: LiFePO4- carbon composites obtained by high-pressure technique: Synthesis and studies on their structure and physical properties, Solid State Ionics, 2011, 225, 676 - 679
- [19] Doeff M. M., Hu Y., McLarnon F., Kostecki R.: Effect of surface carbon structure on the electrochemical performance of LiFePO4, Electrochemical and Solid--State Letters, 2003, 6, A207
- [20] Brunauer S., Emmett P. H., Teller E.: Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 1938, 60, 309 - 319
- [21] Kim C. W., Park J. S., Lee K. S.: Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material, Journal of Power Sources, 2006, 163, 144
- [22] Martínez Casado F. J., Ramos Riesco M., Redondo M. I., Choquesillo-Lazarte D., Lopez-Andres S., Rodríguez Cheda J. A.: Anhydrous lithium acetate polymorphs and its hydrates: three - dimensional coordination polymers, Cryst. Growth Des., 2011, 11, 1021
- [23] Chang Z. - R., Lv H. - J., Tang H. - W., Li H. - J., Yuan X. - Z., Wang H.: Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries, Electrochimica Acta, 2009, 54, 4595
- [24] Patterson A. L.: The Scherrer formula for X-Ray particle size determination, Phys. Rev., 1939, 56, 978 - 982
- [25] Islam M. S., Recent atomistic modeling studies of energy materials: batteries included, Phil. Trans. R. Soc. 2010, A 368, 3255 - 3267
- [26] Lu C. - Z., Fey G. T.-K., Kao H. - M., Study of LiFePO4 cathode materials coated with high surface area carbon, J. Power Sources, 2009, 189, 155 - 162
- [27] Gaberscek M., Dominko R., Bele M., Remskar M., Hanzel D., Jamnik J.: Porous, carbon-decorated Li-FePO4 prepared by sol–gel method based on citric acid, Solid State Ionics, 2005, 176, 1801 - 1805
- [28] Yu F., Zhang L., Lai L., Zhu M., Guo Y., Xia L., Qi P., Wang G., Dai B.: High electrochemical performance of LiFePO4 cathode material via in-situ microwave exfoliated graphene oxide, Electrochim. Acta, 2015, 151, 240 - 248
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e479947-cac4-41ca-86fc-2e5db47c734d