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 The propagation of plane waves in a rotating homogeneous, isotropic, thermoelastic solid with double 
porosity following Lord-Shulman’s theory of thermoelasticity has been investigated. It is assumed that the medium 
rotates about an axis normal to the surface with a uniform angular velocity. There may exist five coupled waves 
that evolved due to the longitudinal, transverse disturbance, voids of type-I and type-II, and temperature change in 
the medium. The secular equation for the model under consideration has been derived with the help of formal 
solutions and boundary conditions. The amplitude of displacements, temperature change and volume fraction fields 
for voids of type-I and type-II have also been computed analytically. Finally, numerical computations have been 
carried out for magnesium crystal material to understand the behavior of amplitude of phase velocity, penetration 
depth, specific loss, displacement components, temperature change, and volume fraction field due to type-I and 
type-II voids corresponding to the different rotation rates. Various graphs have been plotted to support the analytical 
findings. The study may be used in the development of rotation sensors, material design and thermal efficiency.  
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1. Introduction 
 

Almost every substance on our planet is porous, and the thermoelastic effect is present in almost all of 
them; as a result, when a medium is heated, the voids present in the medium expand and contract when the 
medium is cooled. He fact that particles try to migrate back to their original form plays a vital role in 
contraction and expansion. The study of the propagation of waves through multiple porous media influenced 
by the presence of voids and temperature in the medium is the backbone in many areas of the petroleum 
industry, geophysics, and chemical engineering. The theory of thermoelasticity was formulated by Lord and 
Shulman (LS) [1] who came up with a wave-type heat equation that includes a time derivative and a heat flow 
vector. By adding the existence of pores in an elastic continuum, Nunziato and Cowin [2] established the 
nonlinear theory of elastic materials with voids, which allocated an extra degree of freedom to each material 
particle. Wilson and Aifanits [3] investigated the idea of dual-porosity consolidation and concluded that if one 
kind of a pore space is reduced to zero, the outcomes are similar to the traditional idea of single porosity 
consolidation. Iesan [4] developed some theorems about the uniqueness of solution, reciprocity connection, 
and the variational characterization of solution in a linear theory of thermoelastic materials with voids. A heat-
flux dependent theory in which a new set of independent variables is added, including the heat flow vector, 
has been proposed by Dhaliwal and Wang [5]. 

A mechanical model for a hydrothermoelastic medium with double porosity has been analyzed by 
Khalili and Selvadurai [6], in which the governing equations are obtained using a systematic macroscopic 
approach that adheres to the necessary conservation. Sharma and Pathania [7, 8] demonstrated the propagation 
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of waves on a homogeneous, thermally conducting isotropic plate bordered on both sides by layers or half-
spaces of an inviscid liquid using extended theories of thermoelasticity. The impact of rotation on temperature 
profiles and displacement of a micro-polar thermoelastic half-space under five theories has been examined by 
Othman and Singh [9]. Sharma and Grover [10] analyzed the propagation of body waves in a homogeneous 
isotropic rotating generalized thermoelastic solid. The effect of rotation, voids and thermal relaxation time on 
the propagation of Rayleigh waves in a rotating thermoelastic half-space with voids was investigated by 
Sharma and Kaur [11]. Othman and Abbas [12] observed the effect of rotation on the plane waves in a rotating 
thermoelastic half-space using the LS theory of thermoelasticity. Darcy’s law to establish the uniqueness of 
the solution by extending the Nunziato–Cowin theory to doubly porous materials was used by Iesan and 
Quantinilla [13]. Kumar et al. [14] studied the boundary value problem for the thermoelastic solid with double 
porosity using the state space approach. The effect of rotation on the surface wave propagation in magneto-
thermoelastic materials with voids was studied by Farhan and Alla [15], who found that the Coriolis force is 
the cause of damping thermoelastic voids. Barak and Kaliraman [16, 17] examined the imperfect interface 
between fluid-saturated porous solid half space and micropolar elastic solid half-space for the reflection and 
transmission of elastic waves.  

The propagation of plane harmonic waves in partly saturated soils was studied using Christoffel equations 
by Barak et al. [18]. Reflection of plane waves from the free surface of a rotating orthotropic magneto-thermoelastic 
solid half-space with diffusion, fractional-order initially stressed, was studied by Yadav [19, 20, 21, 22, 23, and 24]. 
Barak and Dhankhar [25] evaluated the effect of inclined load on a functionally graded fiber-reinforced 
thermoelastic medium with temperature-dependent properties, and the effect of Lamb-type waves in a 
porothermoelastic plate immersed in the inviscid fluid was analyzed by Pathania and co-researchers [26, 27]. 
Kumari et al. [28, 29] studied the distinctive characteristics of reflection coefficients and energy sharing at both 
open-pore and sealed-pore border surfaces and measured the horizontal and vertical motion at the surface of partially 
saturated soils. The aim of the present study is to determine the effect of angular velocity, porosity, and thermal 
variation on the propagation of waves in a rotating homogeneous isotropic thermoelastic solid medium with double 
porosity for the stress-free boundaries as depicted graphically in Figs [2-10]. 

 
2. Formulation of the problem 
 
 Let us consider a space which is initially at a uniform temperature 0T  and rotating uniformly with an 
angular velocity ( , , )0 0Ω = Ω


. The surface z 0=  is considered thermally insulated, isothermal, stress-free, and 

has no fractional volume change on the boundary surface (Fig.1).  
 

 
 
 Fig.1. Geometry of the problem. 
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The x − axis is chosen in the direction of wave propagation so that all the field quantities are independent of 
the y − axis. The constitutive equations include two additional terms, the part of centripetal force ( )uΩ× Ω×

    
(depends on time) and the Coriolis acceleration ( )2 uΩ×

   due to rotation, where ( , , )u u 0 w=  is the 
displacement vector. The disturbance must be confined in the neighborhood of the free surface z 0= , and it 
fades away as z → ∞ . 
 
3. Constitutive relations 
 

The constitutive relations established by Lord and Shulman [1] for a rotating, isotropic homogeneous 
double porous thermoelastic solid in the absence of body forces, equilibrated forces, and heat sources in the 
xz − plane considered by Iesan and Quantinilla [13], Sharma and Kaur [11] are as follow: 

 
  ,ij ij kk ij ij ij ije 2 e b d Tτ = λδ + μ + δ ϕ + δ ψ − βδ   (3.1) 
 
  , ,

1
i i 1 ibσ = αϕ + ψ , (3.2) 

 
  , ,

2
i 1 i ibσ = ϕ + γψ , (3.3) 

 
  jj 1 3 1be Tξ = − − α ϕ − α ψ + γ ,  (3.4) 
 
  jj 3 2 2de Tζ = − − α ϕ − α ψ + γ , (3.5) 
 
  jj 1 2e aTρη = β + γ ϕ + γ ψ + . (3.6) 
 
The Fourier’s law of heat conduction 
 

  ,i 0 i iQ t Q KT+ = . (3.7) 
 
The equations of motion 
 

  ( ),
2

ij j i j j i i ijk j ku u u 2 uτ = ρ + Ω Ω − Ω + ∈ Ω  . (3.8) 

 
The equilibrated stress equations of motion 
 

  ,
1
j j 1σ + ξ = χ ϕ , (3.9) 

 

  ,
2
j j 2σ + ζ = χ ψ . (3.10) 

 
The energy equation 
 

  ( ) ,0 0 j jT t Qρ η + η =  . (3.11) 
 
Using the above constitutive relations in the two-dimensional form, we have 
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  ( ) ( ) ( ), , , , , , , 2
xx xz zz xz x x x2 u w u w b d T u u 2 wλ + μ +λ +μ + + ϕ + ψ −β = ρ − Ω + Ω  , (3.12) 

 
  ( ) ( ) ( ), , , , , , 2

zz xx xz z z z2 w w u b d T w w 2 uλ + μ +μ + λ + μ + ϕ + ψ −β = ρ − Ω − Ω  ,  (3.13) 

 
  ( ) ( ) ( ), , , , , ,xx zz 1 xx zz x z 1 3 1 1b b u w Tα ϕ +ϕ + ψ +ψ − + − α ϕ − α ψ + γ = χ ϕ , (3.14) 
 
  ( ) ( ) ( ), , , , , ,1 xx zz xx zz x z 3 2 2 2b d u w Tϕ +ϕ + γ ψ +ψ − + − α ϕ − α ψ + γ = χ ψ , (3.15) 
 

  
( ) ( )( )

( ) ( ) ( )
, , , , , ,xx zz 0 x z 0 x z

1 0 0 2 0 0 e 0

K T T T u w t u w

T t T t C T t T

+ − β + + + +

−γ ϕ + ϕ − γ ψ + ψ = ρ +

   

     . (3.16) 

 
Consider the dimensionless parameters 
 

  
*

'
1

xx
c

ω= ,       
*

'
1

zz
c

ω= ,     
*

' 1

0

c uu
T

ρω=
β

,      
*

' 1

0

c ww
T

ρω=
β

,      *'t t= ω ,    *'0 0t t= ω ,  

   (3.17) 

  '
0

TT
T

= ,     
*

'
2

1
2
1c

ω χ ϕϕ = ,     
*

'
2

1
2
1c

ω χ ψψ = ,      *' ΩΩ =
ω

,      *' ωω =
ω

,      '
1

cc
c

= . 

 
where, ( ) t3 2β = λ + μ α , e 0C aTρ = , iQ  denotes the heat flux, η  is the entropy per unit mass, ijk∈  is the Levi-

Civita term, a  is the thermal capacity of the material, 1c  and *ω represent the compressional wave velocity 
and characteristic frequency. Here dot '⋅' represents the differentiation with respect to time ‘t’ and ',' indicates 
the partial differential with respect to space coordinates. 

Putting the non-dimensional quantities (3.17) in Eqs (3.12)-(3.16) and omitting the primes, the non-
dimensional version of the governing equations have been obtained as: 
 
  ( ), , , , , ,2 2 2

xx zz xz 1 x 2 x xu u 1 w a a T u u 2 w+δ + − δ + ϕ + ψ − = − Ω + Ω  , (3.18) 

 
  ( ) , , , , , ,2 2 2

xz xx zz 1 z 2 z z1 u w w a a T w w 2 u− δ +δ + + ϕ + ψ − = − Ω − Ω  , (3.19) 

 

  ( ) ( ), , , , , ,xx zz 3 xx zz 4 x z 5 6 7 2
1

1a a u w a a a Tϕ +ϕ + ψ +ψ − + − ϕ − ψ + = ϕ
δ
 , (3.20) 

 

  ( ) ( ), , , , , ,xx zz 8 xx zz 9 x z 10 11 12 2
2

1a a u w a a a Tϕ +ϕ + ψ +ψ − + − ϕ − ψ + = ψ
δ
 , (3.21) 

 
  ( ) ( )( ) ( ) ( ), , , , , ,xx zz 0 T x z 0 x z 13 0 14 0T T T t T u w t u w a t a t+ − + = ε + + + + ϕ + ϕ + ψ + ψ          (3.22) 
where 

  *

2
1

1 2
1 0

bca
T

=
ω χ β

,      *

2
1

2 2
1 0

dca
T

=
ω χ β

,      1
3

ba =
α

,      0 1
4 2

1

T ba
c

β χ
=

ρ α
,      *

2
1 1

5 2
ca α=

αω
,  
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  *

2
3 1

6 2
ca α

=
αω

,      1 0 1
7

Ta γ χ
=

α
,     8

1
a

b
γ= ,      0 1

9 2
1 1

T da
c b

β χ
=

ρ
,      *

2
3 1

10 2
1

ca
b

α
=

ω
,  

 

  *

2
2 1

11 2
1

ca
b

α=
ω

,      2 0 1
12

1

Ta
b

γ χ
= ,      *

4
1 1

13 3
1

ca
K

γ=
ω χ

,      *

4
2 1

14 3
1

ca
K

γ=
ω χ

, 

 

  
( )

2
0

T
e

T
C 2

β
ε =

ρ λ + μ
,      2

1
2c λ + μ=

ρ
,      2

2c μ=
ρ

,      ,2
3

1
c α=

χ
      ,2 1

4
2

bc =
χ

 

 

  *
2

e 1C c
K
ρ

ω = ,     ,
2

2 2
2
1

c
c

δ =       ,
2

2 3
1 2

1

c
c

δ =       
2

2 4
2 2

1

c
c

δ = . 

 
Here Tε  is the thermo-mechanical coupling parameter, 2c , 3c , and 4c  are the velocities of the 

transverse wave, change in type-I voids, and change in type-II voids, respectively. The displacement 
components using the Helmholtz decomposition theorem may be presented as 
 
  , ,x zu G H= + , , ,z xw G H= −  (3.23) 

 
where ( , , )G x z t  is the scalar potential and ( , , )H x z t  is the vector potential. Plugging Eq.(3.23) in Eqs (3.18) 
to Eq.(3.22), we get 
 
  , , 2

xx zz 1 2G G a a T G G 2 H+ + ϕ + ψ − = − Ω − Ω  , (3.24) 
 
  ( ), ,2 2

zz xxH H H H 2 Gδ + = − Ω + Ω  , (3.25) 
 

  ( ) ( ), , , , , ,xx zz 3 xx zz 4 xx zz 5 6 7 2
1

1a a G G a a a Tϕ +ϕ + ψ +ψ − + − ϕ − ψ + = ϕ
δ
 , (3.26) 

 

  ( ) ( ), , , , , ,xx zz 8 xx zz 9 xx zz 10 11 12 2
2

1a a G G a a a Tϕ +ϕ + ψ +ψ − + − ϕ − ψ + = ψ
δ
 , (3.27) 

 
  ( ) ( )( ) ( ) ( ), , , , , ,xx zz 0 T xx zz 0 xx zz 13 0 14 0T T T t T G G t G G a t a t+ − + = ε + + + + ϕ + ϕ + ψ + ψ         . (3.28) 

 
4. Plane wave solution 
 

To discuss the plane wave propagation in a linear homogeneous double porous thermoelastic material 
the solutions of Eqs (3.24) to (3.28) are assumed of the form 
 
  ( ) ( ) ( ) ( ) ( ) ( ){ } ( ){ }, , , , , , , , expG H T G z H z z z T z k x ctϕ ψ = ϕ ψ ι − . (4.1) 
 
Here ( )G z , ( )H z , ( )zϕ , ( )zψ , ( )T z  are the functions representing the amplitude of waves, /c k= ω  is the 
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phase velocity, ω  is the frequency, k  is the wavenumber. Putting the solution (4.1) in Eqs (3.24) to (3.28), 
the system of coupled equations after suppressing bars has been obtained as 
 
  *( )2 2 2

1 2m G 2 H a a T 0− α − ιΓω + ϕ + ψ − = , (4.2) 
 
  *( / ) ( )2 2 2 22 G m H 0Γιω δ + − β = , (4.3) 
 
  *( ) ( ) ( )2 2 2 2 2 2

4 3 6 7a m k G m a m k a a T 0 − − + − γ ϕ + − − ψ + =  , (4.4) 

 
  *( ) ( ) ( )2 2 2 2 2 2

9 10 8 12a m k G m k a a m a T 0− − + − − ϕ + − δ ψ + = , (4.5) 
 
  ( ) [ ( )]2 2 2 2 2 2 2 2

T 0 13 0 14 0 0m k G a a m k 1 c T 0ε τ ω − + τ ω ϕ + τ ω ψ + − − τ =  (4.6) 
 
where 
 

  
m

z
∂=
∂

,      ΩΓ =
ω

,      * 2 2 11
2 2

8 2 8

a1k 1 c
a a

  
δ = − −   δ ω   

,      * ( ( ))2 2 2 2k 1 c 1α = − + Γ , 

 

  * ( )
2

2 2 2
2

ck 1 1
 

β = − + Γ 
δ  

,      *2 2 2 5
2 2
1

a1k 1 c
  

γ = − −   δ ω   
,      1

0 0t
−τ = + ιω . 

 
The homogeneous system of Eqs (4.2) to Eq.(4.6) has a non-trivial solution if the determinant of its coefficient 
matrix vanishes which gives characteristic roots as  
 
  ( )2 2 2 2

j jm k 1 c= − λ  

 
where ;2

jλ , , , ,j 1 2 3 4 5=  are the roots of the characteristic equation  
 
  10 8 6 4 2

0 1 2 3 4 5L D L D L D L D L D L 0+ + + + + =  (4.7) 
 

The values of , , , ,0 1 2 3 4L L L L L  and 5L  are given in Appendix A . 

Equation (4.7) is of degree five in 2D , which gives the basic to study the impact of rotation on various 
wave characteristics. These waves are longitudinal, shear, thermal, and volume fraction of type-I and type-II 
voids, which get modified due to rotation and propagate possibly in the double porous thermoelastic solid 
about an axis normal to its plane. The motion must be restricted to the free surface z 0= . Therefore, the 
radiation conditions Re( ) ; , , , ,jm 0 j 1 2 3 4 5≥ =  satisfied by the formal solution (4.1) are given by 

 

  ( ) ( ) ( ), , , , , , , , q
5

ik x ct m z
q q q q q

q 1
G H T 1 R V W S U e − −

=
ϕ ψ = . (4.8) 
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Putting Eq.(4.8) in Eqs (3.13) to (3.16) we obtained the set of non-homogeneous systems in a matrix form 
(4.9), where the coupling parameters , , ,q q q qR V W S  are obtained after solving Eq.(4.9). These coupling 
parameters show the effect of various interacting fields on the waves.  
 

  

*

*

*

*

/

( ) ( )

( ) ( )

2 22
q1 2 q

2 2 2 2
q q

2 2 2 2 2 2
qq 3 q 6 7 4 q

2 2 2 2 2 2qq 10 8 q 12 9 q

m2 a a 1 R
m 0 0 0 V 2

W0 m a m k a a a m k
S0 m k a a m a a m k

   − + α− ιΓω −       − β    − Γιω δ     =    − γ − − −         − − − δ −    

. (4.9) 

 
5. Boundary conditions 
 

At the plane surface z 0=  of a rotating thermoelastic solid with double porosity, the mechanical and 
thermal boundary conditions are given by  

(i) The normal and shear stress are vanishing, i.e. ,zz xz 0τ τ =  
 

  ( ), ,2 2
xx xzG G 2 H 2 G H 0− Ω − Ω − δ + =  , (5.1) 

 

  ( ), ,2 2
xz xxH H 2 G 2 G H 0− Ω + Ω + δ − = . (5.2) 

 
(ii) Equilibrated stress tensor for type-I and type-II voids is zero, i.e. ,1 2

i i 0σ σ =  
 
  , ,z 1 zb 0αϕ + ψ = , (5.3) 
 
  , ,1 z zb 0ϕ +γψ = . (5.4) 
 

(iii) The thermal boundary condition is  
 

  *,zT H T 0+ =   (5.5) 
 
where *H  indicates the surface heat transfer coefficient; the boundary is thermally insulated if *H 0→  and 
isothermal if *H → ∞ . 
 
6. Derivation of the secular equation  
 

In this section, the main aim is to obtain the secular equation of the medium under the effect of rotation, 
using Eq.(4.8) with boundary conditions (5.1) to (5.5) at the surface z 0= . A homogeneous system of 
equations in ; , , , ,qU q 1 2 3 4 5=  has been obtained as  
 

  ( )
5

q q q
q 1

1 Qf R U 0
=

+ = , (6.1) 
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  ( )
5

q q q
q 1

R Qf U 0
=

− = , (6.2) 

 

  ( )
5

q q 3 q q
q 1

m V a W U 0
=

+ = , (6.3) 

 

  ( )
5

q q 8 q q
q 1

m V a W U 0
=

+ = , (6.4)  

 

  ( )*
5

q q q
q 1

m H S U 0
=

− + = , (6.5) 

 
here 
 

  2 kQ
P
ι= ,     ( )

2
2 2

2
cP k 2 1

 
= − + Γ  δ 

,      ; , , , ,
2

q q 2
k cf m q 1 2 3 4 5Γ= + =
δ

. 

 
A non-trivial solution exists for the systems (6.1) to Eq.(6.5) only if the determinant of the coefficient 

matrix vanishes. The determinant of Eqs (6.1) to Eq.(6.5) leads to the following secular equation for the 
propagation of waves in the medium 
 

  
( )

( )*
1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

1 1 2 2 3 3 4 4 5 5

m S F m S F m S F m S F m S F

H S F S F S F S F S F 0

− + − + +

− − + − + =
  (6.6) 

 
where 
 

  ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 3 3 4 4 5 5

2 2 3 3 4 4 5 5
1

2 2 3 2 3 3 3 3 4 4 3 4 5 5 3 5

2 2 8 2 3 3 8 3 4 4 8 4 5 5 8 5

1 Qf R 1 Qf R 1 Qf R 1 Qf R
R Qf R Qf R Qf R Qf

F
m V a W m V a W m V a W m V a W
m V a W m V a W m V a W m V a W

+ + + +
− − − −

=
+ + + +
+ + + +

, 

 

  ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 3 3 4 4 5 5

1 1 3 3 4 4 5 5
2

1 1 3 1 3 3 3 3 4 4 3 4 5 5 3 5

1 1 8 1 3 3 8 3 4 4 8 4 5 5 8 5

1 Qf R 1 Qf R 1 Qf R 1 Qf R
R Qf R Qf R Qf R Qf

F
m V a W m V a W m V a W m V a W
m V a W m V a W m V a W m V a W

+ + + +
− − − −

=
+ + + +
+ + + +

, 

 

  ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2 4 4 5 5

1 1 2 2 4 4 5 5
3

1 1 3 1 2 2 3 2 4 4 3 4 5 5 3 5

1 1 8 1 2 2 8 2 4 4 8 4 5 5 8 5

1 Qf R 1 Qf R 1 Qf R 1 Qf R
R Qf R Qf R Qf R Qf

F
m V a W m V a W m V a W m V a W
m V a W m V a W m V a W m V a W

+ + + +
− − − −

=
+ + + +
+ + + +

, 
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  ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2 3 3 5 5

1 1 2 2 3 3 5 5
4

1 1 3 1 2 2 3 2 3 3 3 3 5 5 3 5

1 1 8 1 2 2 8 2 3 3 8 3 5 5 8 5

1 Qf R 1 Qf R 1 Qf R 1 Qf R
R Qf R Qf R Qf R Qf

F
m V a W m V a W m V a W m V a W
m V a W m V a W m V a W m V a W

+ + + +
− − − −

=
+ + + +
+ + + +

, 

 

  ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4
5

1 1 3 1 2 2 3 2 3 3 3 3 4 4 3 4

1 1 8 1 2 2 8 2 3 3 8 3 4 4 8 4

1 Qf R 1 Qf R 1 Qf R 1 Qf R
R Qf R Qf R Qf R Qf

F
m V a W m V a W m V a W m V a W
m V a W m V a W m V a W m V a W

+ + + +
− − − −

=
+ + + +
+ + + +

. 

 
Equation (6.6) provides full information regarding the wavenumber, phase velocity, and attenuation coefficient 
of the plane waves in the considered medium. 
 
7. Special cases of the secular equation 
 
Some special cases of the secular equation (6.6) have been discussed below. 
(i) Thermally insulated case: For the thermally insulated case *H 0→  
 
  1 1 1 2 2 2 3 3 3 4 4 4 5 5 5m S F m S F m S F m S F m S F 0− + − + = . (7.1) 
 
(ii) Isothermal case: For the isothermal case *H → ∞  
 
  1 1 2 2 3 3 4 4 5 5S F S F S F S F S F 0− + − + = . (7.2) 

 
(iii) Non-rotating double porous thermoelasticity: In the absence of rotation, i.e. 0Γ = , the secular equation 

(6.6), with reduced values of characteristics roots qm  and amplitude ratios ,q qR V , qW qS has been 
obtained. Also, qf  involved in determinants qF  will be replaced by ; , , , ,qm q 1 2 3 4 5=  and 

2
2

2
cP k 2

 
= −  δ 

. 

 
(iv) Coupled thermoelasticity: The compact secular equation (6.6) for a thermoelastic solid half-space with 

double porosity in the context of the coupled theory of thermoelasticity has been obtained by substituting 
the thermal relaxation time 0t 0=  in the expressions of characteristics of roots jm  and amplitude ratios 

, , , .q q q qR V W S  
 

 
8. Solution of the secular equation 
 
 The phase velocity of the waves is complex in nature because the characteristics of roots 2

jm  are also 

complex in nature as investigated by [26,27,30]. After obtaining the complex roots 2
jm , we get 
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  ; , , , ,j
j

1c j 1 2 3 4 5
m

= ± = . (8.1) 

 
These five pairs give us five distinct types of dispersive and attenuated waves that can propagate in the medium, 
which rotates about the axis normal to its plane. We write 
 
  *1 1 1

j j jc v Q− − −= + ιω  (8.2) 
 
where * *1

j jk R Q−= + ιω , and *
j jR = ω ν , *

jR and *
jQ are real quantities. The plane wave solutions components 

given by Eq.(4.1) become * *( )j j jQ x R x t− + ι − ν . This shows that jv  and *
jQ  is the phase velocity and the 

attenuation coefficient of the waves. By using expression (8.2) in the secular equation (6.6), the complex roots 
;2

jλ , , , ,j 1 2 3 4 5=  of Eq.(4.7) are calculated with the help of MATLAB. These roots are further used to 

compute the complex characteristics of roots ; , , , ,2
jm j 1 2 3 4 5= from the relation ( )2 2 2 2

j jm k 1 c= − λ . So, the 

phase velocity ( )jv  and attenuation coefficient *( )jQ  are obtained as / Re( )j j1 mν = , * Im( )j jQ m= ω  using 
relation (8.2) in Eq.(8.1). The five distinct real values of phase velocity jν correspond to five distinct waves. 

These waves are attenuated in space, having the attenuation coefficient *
jQ  , and get modified due to the 

volume fraction of type-I and type-II voids as well as thermal variations and rotation effect.  
The specific loss ( SL ) and penetration depth ( PD ) have been obtained by Pathania and Joshi [27] and Sharma 
et al. [30]  as follows: 
 

  
* *

*
Im( )
Re( )

j j j

j

Q QkSL 4 4 4
k R

ν
= π = π = π

ω
, 

*Im( ) j

1 1PD
k Q

= = . (8.3) 

 
9. Displacement amplitude, volume fraction field, and temperature change 

 
The amplitudes of the x  and z  component of displacements, volume fraction field of type-I and type-

II voids, and temperature change on the surface z 0=  of plane wave propagation have been developed by 
using Eqs (3.23) and (4.8) as 
 
  ( ){ }*exp j jU U R x v t= χ ι − ,     ( ){ }*exp j jW W R x v t= χ ι − ,       

   (9.1) 
  ( ){ }*exp j jR x v tϕ = Φχ ι − ,     ( ){ }*exp j jR x v tΨ = Ψχ ι − ,      ( ){ }*exp j jT R x v t= Θχ ι − . 

 
Here,  
 
  u U=  ,      w W=  ,      ϕ = ϕ ,      ψ = ψ ,      T T=  ,      { }*exp1 jU Q xχ = − . 

 
Also,  
 
  ( ) /1 1 2 2 3 3 4 4 5 5 1U U B U B U B U B U B U= + + + + ,
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  ( ) /1 1 2 2 3 3 4 4 5 5 1W U D U D U D U D U D U= − + + + + , 
 
  ( ) /1 1 2 2 3 3 4 4 5 5 1U V U V U V U V U V UΦ = + + + + , 
 
  ( ) /1 1 2 2 3 3 4 4 5 5 1U W U W U W U W U W UΨ = + + + + , 
 
  ( ) /1 1 2 2 3 3 4 4 5 5 1U S U S U S U S U S UΘ = + + + +  
 
where j j jB k m R= ι − , j j jD kR m= ι + . 
Using Eqs (9.1) in Eqs (6.1)-(6.5), the set of equations has been written in a matrix form as 
 

  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 3 3 4 4 5 5

2 2 3 3 4 4 5 5

2 2 3 2 3 3 3 3 4 4 3 4 5 5 3 5

2 2 8 2 3 3 8 3 4 4 8 4 5 5 8 5

1 Qf R 1 Qf R 1 Qf R 1 Qf R
R Qf R Qf R Qf R Qf

A
m V a W m V a W m V a W m V a W
m V a W m V a W m V a W m V a W

+ + + + 
 − − − − =
 + + + +
 + + + +  

,  

 

  

/
/
/
/

2 1

3 1

4 1

5 1

U U
U U

X
U U
U U

 
 
 =
 
 
  

,      

( )
( )

( )
( )

1 1

1 1

1 1 3 1

1 1 8 1

1 Qf R

R Qf
B

m V a W

m V a W

 − +
 
− − =  − + 
 − + 

. 

 
The terms / ; , , ,i 1U U i 2 3 4 5=  are obtained from the relation AX B= . 
 
10. Numerical discussion 
 

To compute the numerical results for this model, MATLAB software has been used for the magnesium 
crystal material as defined by Singh et al. [31], and physical values of these parameters are taken as shown in 
Table.1.  
 
Table 1. Values of the material constants. 

 
Symbol Value Symbol Value Symbol Value 

λ  . 10 21 5 10 Nm−×  b  8 22 10 Nm−×  μ  . 9 27 5 10 Nm−×  
ρ  3 32 10 Kgm−×  d  . 8 22 1 10 Nm−×  α  98 10 N×  

1α  . 10 21 2 10 Nm−×  K  . 2 1 11 7 10 Wm K− −× 2α  . 10 22 21 10 Nm−×  

3α  . 6 21 23 10 Nm−×  2χ  1330 kgm−  tα  . 5 11 78 10 K− −×  
γ  . 98 2 10 N×  1b  . 68 1 10 N×  1γ  6 2 12 10 Nm K− −×  

2γ  . 6 23 11 10 Nm−×  eC  . 6 2 2 11 809 10 m s K −× 0T  293 K  

1χ  1320 kgm−   ω  0.01Hz   
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 Using the numerical value of the parameters, the graphs of the attenuation coefficient, phase velocity, 
penetrating depth, specific loss, surface displacements, surface temperature change, and the surface volume 
fraction for type-I and type-II voids with respect to the wavenumber have been plotted. The influence of 
angular velocity ( , . , . , . )0 0 2 0 4 0 6Ω =  on various physical properties (from Figs 2-10) has been examined.  
 

 
 

 

  
Fig.2. Variation of phase velocity with 

wavenumber. 
Fig.3. Variation of specific loss with wavenumber. 

 
Figure 2 depicts the variation of phase velocity against wavenumber for different values of angular velocity and it 
is observed that when the medium is rotating, the magnitude of phase velocity is quite high at vanishing 
wavenumber, and it decreases with an increase in the wavenumber. The magnitude of phase velocity is small in the 
case of the non-rotating medium  as compared to the medium in rotation. The rotation rate also affects the phase 
velocity; if the number of rotation-rate increases, the magnitude of phase velocity also increases. The variation is 
studied in Fig.3 when the medium is non-rotating or rotating with different angular velocities. It is noticed that if 
the medium is non-rotating, the specific loss increases rapidly, and after that, it increases at a deliberate rate. It is 
also noticed that when the rotation rate increases the amplitude of specific loss also increases. 
 

  
Fig.4. Variation of attenuation coefficient with 

wavenumber. 
 

Fig.5. Variation of penetrating depth with 
wavenumber. 
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 Figure 4 depicts the variation of the attenuation coefficient against the wavenumber under the effect of 
rotation of the medium. The amplitude of the attenuation coefficient is much higher when the medium is non-
rotating, i.e. ( )0Ω = . If the rotation rate increases from .0 2Ω =  to .0 6Ω = , the magnitude of the attenuation 
coefficient decreases. The variation of the penetrating depth with the wavenumber for different values of the 
rotating parameters shown in Fig.5. It is also observed that as the wavenumber approaches zero, the magnitude 
of the penetrating depth is high and then slashes down sharply with an increase of the wavenumber for the non-
rotating case, the amplitude of the penetrating depth is small as compared to the rotating case. The magnitude of 
the penetrating depth in case of .0 6Ω =  is higher than that of .0 2Ω = . So it has been concluded that as the 
rotation rate increases, the penetrating depth also slightly increases. 
 

  
Fig.6. Variation of surface displacement 

(horizontal) with wavenumber. 
Fig.7. Variation of surface displacement (vertical) 

with wavenumber. 
 
Figures 6 and 7 illustrate the effect of wavenumber on the horizontal and vertical surface displacement 
components under the effect of rotation of the medium. The magnitude of both the horizontal and vertical surface 
displacement components increases with an increase of the wavenumber. The amplitude of both displacement 
components has a small magnitude in the case of a non-rotating medium. Besides, there is a significant effect of 
rotation rate on the amplitude of displacement components. It is observed that if the rotation rate of the medium 
decreases, the profile of horizontal and vertical displacement components also decreases.  
  

  
Fig.8. Variation of surface temperature change with 

wavenumber. 
Fig.9. Variation of volume fraction type-I voids 

with wavenumber. 
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 Figure 8 graphically shows the effect of wavenumber on the surface temperature change. The effect 
of rotation is noticed on the surface temperature change as the profiles show dispersive behavior for increasing 
the value of wavenumber. It can be seen that the magnitude of surface temperature change is high for the 
rotating medium in comparison with the non-rotating medium. When the rotation rate is 0.2, the magnitude of 
surface temperature change is small as compared to the rotation rate .0 4Ω =  and .0 6Ω = . Figures 9 and 10 
depict the variation of wavenumber on the volume fraction field due to type-I voids and type-II voids for 
different values of rotation parameters. The magnitude of volume fraction of type-I and type-II voids decreases 
with an increase in the wavenumber. The significant effect of the rotation parameters on the volume fraction 
field due to type-I and type-II voids is observed. If the rotation rate increases, the amplitude of the volume 
fraction field due to both types of voids increases. 
 

 
 

Fig.10. Variation of volume fraction type-II voids with wavenumber. 
 
12. Conclusions 
 
 The propagation of plane waves in a thermoelastic double porous solid medium under the effect of 
rotation is studied. The secular equation has been derived in the simplest form to analyze various physical 
properties of the waves. After the lengthy and difficult algebraic calculations in the background, the following 
conclusions may be drawn: 

1. There may exist five coupled plane waves propagating with different phase speeds. The presence  of 
type-I and type-II voids, thermal, and rotation parameters are responsible for the coupling in the waves. 

2. In the absence of type-I and type-II voids and thermal variation, the classical longitudinal and transverse 
waves are coupled through the rotation parameter of the medium.  

3. The effect of rotation is significant in the considered problem as the amplitude of various physical 
quantities has increasing and decreasing trends. The amplitude of phase velocity, penetrating depth, 
and specific loss increases with an increase of the rotation rate, but the amplitude of attenuation 
coefficient decreases. 

4. The displacement components, temperature change, and volume faction field due to type-I and type-II 
voids increase with an increase in the rate of rotation. 

5. All the wave profiles are significantly affected by type-I and type-II voids and thermal variations. 
The current study may be used in a variety of fields, including earthquake engineering, soil dynamics, 

petroleum industry, geophysics, and chemical engineering. The study may be used in the development of 
rotation sensors and gyroscopic devices. Adding the double porous parameters to the rotating thermoelastic 
material makes this study more realistic. 
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Nomenclature 
 
 ρ  – density of the medium 
 ,λ μ  – Lame’s constant 

 ,1 2
i iσ σ  – equilibrated stress tensor for type-I, and type-II voids 

 ,ϕ ψ  – volume fraction change of type-I and type-II voids 
 ,b d  – parameters of type-I and type-II voids 
 ( , , )T x z t  – temperature change in medium 
 0t  – thermal relaxation time 

 ,ξ ζ  – intrinsic equilibrated body forces for type-I and type-II voids 
 tα  – coefficient of linear thermal expansion 

 ,1 2χ χ  – coefficient of the equilibrated inertia for type-I and type-II voids 

 eC  – specific heat at constant strain 

 , , , , ,1 2 3 1bα α α α γ  – constitutive coefficients corresponding to voids properties 

 ,1 2γ γ  – constitutive coefficients corresponding to thermal properties 

 K  – thermal conductivity 
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