PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distributions of grain parameters on the surface of aircraft engine turbine blades

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the quality assurance system for components cast using the lost wax method, the object of evaluation is the grain size on the surface of the casting. This paper describes a new method for evaluating the primary grain parameters on the surface of aircraft engine turbine blades. Effectiveness of the method has been tested on two macrostructures distinguished by a high degree of diversity in the grain size. The grounds for evaluating the grain parameters consist of geometric measurement of the turbine blade using a laser profilometer and of approximation of the measurement results using a polynomial of a proper degree. The so obtained analytical non-planar surface serves as a reference point for an assessment of the parameters of grains observed on the real blade surface of a variable curvature. The aspects subjected to evaluation included: the grain areas, shape and elongation coefficients of grains on a non-planar surface of the blade airfoil, using measurements taken on a perpendicular projection by means of a stereoscopic microscope and image analysis methods, and by making calculations using the Mathematica® package.
Rocznik
Strony
17--22
Opis fizyczny
Bibliogr. 16 poz., fot., rys., tab., wykr.
Twórcy
autor
  • University of Silesia, Department of Materials Science, ul. Śnieżna 2, PL-41–200 Sosnowiec
autor
  • Silesian University of Technology, Institute of Mathematics, ul. Kaszubska 23, PL-44–100 Gliwice
autor
  • Department of Materials Science and Metallurgy, ul. Krasińskiego 8, PL- 40-019 Katowice
Bibliografia
  • [1] S. Jones, C. Yuan, Advances in shell moulding for investment casting, Journal of Materials Processing Technology 135 (2003) 258–265.
  • [2] H.S. Whitesell, R.A. Overfelt, Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidified Mar-M247, Materials Science and Engineering A318 (2001) 264–276.
  • [3] S.A.M. Rezavand, A.H. Behravesh, An experimental investigation on dimensional stability of injected wax patterns of gas turbine blades, Journal of Materials Processing Technology 182 (2007) 580–587.
  • [4] Seong-Moon Seo, In-Soo Kima, Chang-Yong Jo, Keisaku Ogi, Grain structure prediction of Ni-base superalloy castings using the cellular automaton-finite element method, Materials Science and Engineering A 449–451 (2007) 713–716.
  • [5] X.L. Yang, H.B. Dong, W. Wang, P.D. Lee, Microscale simulation of stray grain formation in investment cast turbine blades, Materials Science and Engineering A 386 (2004) 129–139.
  • [6] Z. Mazur, A. Luna-Ramı´rez, J.A. Jua´rez-Islas, A. Campos-Amezcua: Failure analysis of a gas turbine blade made of Inconel 738LC alloy, Engineering Failure Analysis 12 (2005) 474–486.
  • [7] M. Zielińska, J. Sieniawski, M. Poręba, Microstructure and mechanical properties of high temperature creep resisting superalloy René 77 modified CoAl2O4, Archives of Materials Science and Engineering 28 (2007) 629-632.
  • [8] D. Cai, L. Xiong, W. Liu, G. Sun, M. Yao, Development of processing maps for a Ni-based superalloy, Materials Characterization 58 (2007) 941–946.
  • [9] Roskosz S., Staszewski M., Cwajna J. A complex procedure for describing porosity in precision cast element sof aircraft engines made of MAR-M 247 and MAR-M 509 superalloys, Materials Characterization 56 (2006) 405–413.
  • [10] C.H. Sims, N. Stoloff, W.Hagel, Superalloys II: High temperature materials for aerospace and industrial power. Wiley-Interscience Publication, New York, 1987.
  • [11] X. Xue, L. Xu, Numerical simulation and prediction of solidification structure and mechanical property of a superalloy turbine blade. Materials Science and Engineering A 499 (2009) 69–73.
  • [12] C. Barbosa, J.L. Nascimento, I.M. Caminha, I.C. Abud, Microstructural aspects of the failure analysis of nickel base superalloys components. Engineering Failure Analysis 12 (2005) 348–361.
  • [13] S. Roskosz, Relationship between mould’s technology and structure of investment cast nickel based superalloys. Inżynieria Materiałowa 4 (2008) 375-379.
  • [14] S. Roskosz, J. Adamiec, Methodology of quantitative evaluation of porosity, dendrite arm spacing and grain size in directionally solidified blades made of CMSX-6 nickel alloy. Materials Characterization 60 (2009) 1120-1126.
  • [15] J. Chmiela, D. Słota, J. Cwajna, S. Roskosz, A method for evaluation of the size of a grain on non-planar surfaces. Inżynieria Materiałowa 3 (2010), 175, 681 – 685.
  • [16] S. Roskosz, The application of grain size evaluation method on non-planar surfaces in the studies of aircraft engine turbine blades. Inżynieria Materiałowa 3 (2010), 691- 694.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e3eb520-01fe-40cd-aa0e-b838bc4513bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.