PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a Certain Method of Determining the Burning Rate of Gun Propellant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relation between the burning rate, r, of a solid propellant and the pressure, p, of gases surrounding the burning propellant surface is the basic component of the gas inflow equation. The applicability of a linear form of the burning rate law is limited only to those propellants for which the same pressure impulses, Ip, were obtained during closed vessel tests at different loading densities. To determine the values of the power form of the burning rate law it is necessary to know the values of the energetic and ballistic characteristics of the propellant. In this paper, a method is presented for determining the relation r(p) for which the only input data are the pressure, p(t), of the propellant gases recorded during closed vessel tests (only for a single specific loading density) and information on the shape and geometric dimensions of the propellant grains. An analysis of the possibility of applying the proposed method, through examples of single-base, double-base and multi-base propellants with neutral and progressive characteristics of burning surface changes, was carried out for the purposes of the present study. The qualitative and quantitative results of burning rate analyses prove the validity of the assumptions made.
Słowa kluczowe
Rocznik
Strony
433--448
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Military University of Technology, Faculty of Mechatronics and Aerospace, Institute of Armament Technology, gen. S. Kaliskiego 2 Street, 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics and Aerospace, Institute of Armament Technology, gen. S. Kaliskiego 2 Street, 00-908 Warsaw, Poland
Bibliografia
  • [1] Corner, J. Theory of the Interior Ballistics of Guns. John Wiley and Sons, New York, 1950.
  • [2] Sieriebriakov, M. Internal Ballistics. (in Polish) Publishing House of Polish MoD, Warsaw, 1955.
  • [3] Krier, H.; Summerfield, M. Interior Ballistic of Guns. Progress in Astronautics and Aeronautics – Vol. 66, American Institute of Aeronautics and Astronautics, New York, 1979.
  • [4] Carlucci, D.E; Jacobson, S.S. Ballistics: Theory and Design of Guns and Ammunition. 2nd ed., CRC Press, Taylor and Francis Group, Boca Raton, 2014; ISBN-13 978-1-4665-6439-8.
  • [5] Leciejewski, Z. Experimental Study of Possibilities for Employment of Linear Form of Burning Rate Law to Characterise the Burning Process of Fine-Grained Propellants. Cent. Eur. J. Energ. Mater. 2008, 5(1): 45-61.
  • [6] Pocock, M.D.; Locking, P.M.; Guyott, C.C. Effect of Statistical Variation in Grain Geometry on Internal Ballistics Modelling. Int. Symp. Ballistics, Proc., 21st, Adelaide, Australia, 2004, 610-615.
  • [7] Leciejewski, Z.; Surma, Z. Effect of Application of Various Ignition Conditions in Closed-Vessel Tests on Burning Rate Calculation of a Fine-Grained Propellant. Combust. Explos. Shock Waves 2011, 47(2): 209-216.
  • [8] Oberle, F.W. Dynamic Vivacity and Its Application to Conventional and Electrothermal-Chemical (ETC) Closed Chamber Results. ARLTR- 2631 Report, 2001.
  • [9] STANAG 4115 Land (Edition 2): Definition and Determination of Ballistic Properties of Gun Propellants. Military Agency for Standardization, Brussels, 1997.
  • [10] Manning, G.T.; Leone, J.; Zebregs, M.; Ramlal, R.D.; van Driel, A.Ch. Definition of a JA-2 Equivalent Propellant to be Produced by Continuous Solventless Extrusion. J. Appl. Mech. 2013, 80: 031405-1-7.
  • [11] Conner, C.B.; Anderson, W.R. Modelling the Combustion of JA2 and Solid Propellants of Similar Composition. Proc. Combust. Inst. 2009, 2131-2137.
  • [12] Heil, M.; Bohn, M.A. Long Term Mass Loss Studies of Propellants Used in Ageing Analysis. Int. NC-Symp., Presentation, 7th, Montreal, Canada, 2016.
  • [13] Torecki, S. Experimental Estimation of the Influence of Heat Losses on the Pressure of Propellant Gases in Closed Vessel. (in Polish), Sci. Aspects Armament Technol., Int. Conf., Proc., 2nd, Waplewo, Poland 1998, 333-341.
  • [14] Homan, B.E.; Juhasz, A.A. A New Closed-Bomb Data Acquisition and Reduction Program. ARL-TR-2491 Report, 2001.
  • [15] Khomenko, Y.P.; Shirokov, V.M. Determining the Unsteady Combustion Behavior of Propellants from Results of Closed-Bomb Testing. Combust. Explos. Shock Waves 2006, 42(2): 149-157.
  • [16] Chereches, T.; Gheorghian, S. Determination of the Maximum Errors of the Force and Gas Covolume of a Propellant Estimated from Closed Bomb Experiment. Armament’2007, Sci. Conf., Proc., 17th, Rynia, Poland, 2007, 47-50.
  • [17] Trębiński, R.; Surma, Z.; Leciejewski, Z.; Fikus, B. Some Considerations on the Methods of Analysis of Closed Vessel Test Data. Int. Symp. Ballistics, Proc., 29th, Edinburgh, Scotland, UK, 2016, 607-617.
  • [18] STANAG 4367 Land (Edition 2): Thermodynamic Interior Ballistic Model with Global Parameters. Military Agency for Standardization, Brussels, 2000.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e3e77b5-b77a-46fa-aa4b-a6f23de57925
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.