PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the Photosonolysis Process Efficacy for the Removal of Anionic Surfactant Linear Alkyl Benzene Sulfonate from Aqueous Solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the experiments on the sulfonate linear alkylbenzene (LAS) solution were performed using the methylene blue active substances (MBAS) method. The effectiveness of the sonochemical and photochemical reactors for LAS degradation was evaluated with an emphasis on the effect of the contact time, pH values, type of process and initial concentrations. The experiments were carried out at the initial concentrations of 0.5 mg/L, 14.00 mg/L and 21.00 mg/L, the contact time of 8, 16, and 24 minutes, pH of 3, 7, and 11, the ultrasonic frequency of 42 kHz, the acoustic power value of 160 W, an ultraviolet lamp with 150W power and the wavelength of 254 nm. This study showed that the LAS degradation was increased along with the contact time. In addition, at alkaline pH, the removal efficiency increased as well. Overall, the results obtained from this research demonstrated that by themselves, both the sonochemical and photochemical reactors may not be useful for completely reducing the complex wastewaters with high surfactant loads, but the succession of the UV/US process has a significant effect on the removal of anionic detergents. These findings demonstrated the removal efficiency under alkaline conditions and the contact time of 24 minutes was equal to 96.97 percent.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Students, Research Committe, Research center, Shahrekord University of Medical Sciences, Shahrekord , Iran
  • Department of Environmental Health Engineering, School of Public Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
  • Department of Environmental Health Engineering, School of Public Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
  • Department of Medical Epidemiology and Biostatistics, School of Public Health, Shahrekord University of Medical Science, Shahrekord, Iran
Bibliografia
  • 1. Ying G. 2006. Fate Behavior and effect of surfactants and their degradation products in the environment. Environ. Int., 32, 417.
  • 2. Venhuis S.H., Mehravar M. 2004. Health effects, environmental impacts, and photochemical degradation of selected surfactant in water. Int J. Photoenergy., 6(3), 115.
  • 3. Urum K, Pekdemir T. 2004.Evaluation of biosurfactant for crude oil contaminated soil washing. Chemosphere, 57(9), 1139.
  • 4. Adak A., Bondyopadhayay M., Pal A. 2005.Removal of anionic surfactant from wastewater by alumina-a case study. Colloids Surf A: Physicochem. Eng. Asp., 254(1–3), 165.
  • 5. Gupta S., Pal A., Ghosh P. 2003. Performance of waste activated carbon as a low cost adsorbent for the removal of anionic surfactant from aquatic environment. Journal of Environmental Science and Health, Part A, 38(2), 381-397.
  • 6. Houas A., Lachhe H., Ksibi M., Elaloui E., Guillard C., Herrmann J.M. 2001. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B: Environ. A, 31(2), 145.
  • 7. Savas K.A., Onder E., 2006. Removal of linear alkylbenzene sulfonate from a model solution by continuous electrochemical oxidation. Desalination, 197(1–3), 262.
  • 8. Akari T., Maki K., Yoshinori K. 2017. Removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) from wastewaters by zero-valent iron (ZVI): predominant removal mechanism for effective SDBS removal. Environ. Sci. Poll. Res., 24(9), 8087.
  • 9. Hossein F., Malekzadeh F., Amirmozafari N., Ghaemin N. 2007. Biodegredation of anionic surfactants by isolated bacteria from activated sludge. Int. J. Environ. Sci. Technol., 4(1), 127.
  • 10. Ghaderpoori M., Dehghani M.H. 2016. Investigating the removal of linear alkyl benzene sulfonate from aqueous solution by ultraviolet irradiation and hydrogen peroxide process. Desalin. Water Treat., 57(32), 15208.
  • 11. Gonzalez E., Broun A., 1998. Fate and distribution linear alkyl benzene sulfonates in the littoral environment. Environ. Sci. Technol., 32(11), 1636.
  • 12. Blasco J., Gonzalez Mazo E.,Sarasquete C. 2008. Linear Alkyl benzene sulfonate (LAS) and bioaccumulation of heavy metals (Cu, Pb) in Ruditapesphilipiharum. Toxicol Environ Chem.,71, 447.
  • 13. Weinberger W., Powers T.J. 1964. The detergents and water quality standards. J. Am. Oil Chem. Soc., 41(11), 736.
  • 14. Jardak K., Drogui P., Daghrir R. 2016. Surfactants in aquatic and terrestrial environment: Occurrence, behavior, and treatment processes. Environ. Sci. Pollut. Res., 23(4), 3195.
  • 15. Abdollahi Y., Abdullah A.H., Zainal Z., Yusof N.A. 2012. Degradation of m-cresol with Mn doped ZnO nanoparticles under visible light irradiation. Fresen. Environ. Bull., 21, 256.
  • 16. Oller I., Malato S., Sanchez J. 2011. Combination of advanced oxidation processes and biological treatment for wastewater decontamination, a review. Sci. Total Environ., 409(20), 4141.
  • 17. Momani F., Touraud E., Domas D.,Russay R., Tomas O.2002. Biodegradability enhancement of textile dyes and textile wastewater by UV photolysis. J. Photochem. Photobiol. Chem.,153(1–3), 191.
  • 18. Ledakowicz S., Solecka M., Zylla, R. 2001. Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J. Biotechnol., 89(2–3), 175.
  • 19. Vaezi F., Nabizadeh F., Mesdaghinia A., Rahimzadeh H. 2007. Evaluating of the disinfection and water quality effects on UV application in the primary stage of water treatment. Iran J. Public Health, 36(2), 12.
  • 20. Belgiornoa V., Rizoo L., Fatta D., Rocca C., Lofrano G., Nikolaou A., Naddeo V., Merice S. 2007. Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination, 215(1–3), 166.
  • 21. Gallipoli A., Braguglia C. 2012. High-frequency ultrasound treatment of sludge: Combined effect of surfactants removal and flock disintegration, Ultrason. Sonochem., 19(4), 864.
  • 22. Nikfar E., Dehghani M.H, Mahvi A.H, Rastkari N., Asif M., Tyagi Inderjeet, Agarwal Shipi, Gupta Vinod Kumar. 2016.Removal of Bisphenol A from aqueous solutions using ultrasonic waves and hydrogen peroxide. J. Mol. Liq., 213, 332.
  • 23. Weavers L.K., Pee G.Y., Frim J.A., Yang L. Rathman J.F., 2005.Ultrasonic destruction of surfactants: application to industrial wastewaters. J. Water Environ. Res., 77(3), 259.
  • 24. Lifka J., Ondruschka B., Hofmann J., 2003. The use of ultrasound for the degradation of pollutants in water, aquasonolysis – a review. Eng. Life Sci., 3(6), 253.
  • 25. APHA. 2005. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association. Water Environment Federation Washington, DC.
  • 26. Ashokkumar M., Niblett T., Tantiongco L., Grieser F. 2003. Sonochemical degradation of sodium dodecyl benzene sulfonate in aqueous solutions. J. Chemstry, 56(10), 1045.
  • 27. Yim B., Okuno H., Nagata Y., Nishimura R., Maeda Y. 2002. Sonolysis of surfactants in aqueous solutions: an accumulation of solute in the interfacial region of the cavitation bubbles, Ultrason. Sonochem, 9(4), 209.
  • 28. Dehghani M.H., Najafpoor A., Azam K. 2010. Using sonochemical reactor for degradation of LAS from effluent of wastewater treatment plant. Desalination, 250(1), 82.
  • 29. Dehghani M.H., Nasseri S., Ghaderpoori M., Mahvi A.H, Nabizadeh R., 2011. Investigation the efficiency of UV/H2O2 process for removal of LAS in aqueous solutions. Iran J. Health & Environ., 3, 411.
  • 30. Kim M.S., Ryu C.S., Kim B.W. 2005.Effect of ferric ion added on photodegradation of alachlor in the presence of TiO2 and UV radiation, Water Res., 39(4), 525.
  • 31. Panizza M., Barbucci A., Delucchi M., Carpanese M.P., Giuliano A., Cataldo-Hernandez M., Cerisola G., 2013. Electro-Fenton degradation of anionic surfactants. Sep. Purif. Technol., 118, 394.
  • 32. Adams C.D, Kuzhikannil J.J., 2000. Effects of UV/ H2O2 preoxidation on the aerobic biodegradability of quaternary amine surfactants. Water Res., 34(2), 668-672.
  • 33. Liu yn, jin D, LU X.P, Han P.F, 2008.Study on degradation of dimethoate solution in ultrasonic airloop reactor. Ultason.Sonochem., 15(5), 755.
  • 34. Nanzai B., Okitsu, Takenaka N., Bandow H. 2009. Sonochemical degradation of alkylbenzene sulfonates and kinetics analysis with a langmuirlype mechanism. J. Phys. Chem., 113(9), 3735.
  • 35. Ren Z., Luo Y., Shi D. 2013. Mechanism on the interaction between amino sulfonate amphoteric surfactant and sodium dodecyl benzene sulfonate in aqueous solution. Colloids Surf A Physicochem. Eng. Asp., 428, 18.
  • 36. Fadaei A.M., Kargar M. 2013. Photocatalytic degradation of Chlorpyrifos in water using titanium dioxide and zinc oxide. Fresen. Environ. Bull, 22, 2442.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e3e39e3-51cf-4356-8ec4-16beb0fe7b6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.