Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Elastic properties are important quantities in the modelling and analysis of sandwich composite structures. The stability of sandwich composites mainly depends on their elastic properties, which in turn depend on the elastic properties of its constituents namely, the core and face skin. Several models have been proposed to predict the elastic constants of core materials such as honeycomb and foam. A foam core may be open-cell foam or closed-cell foam. The present work is focused on the hexagonal cells of a honeycomb grid core and closed-cell polymer syntactic foam core. The honeycomb is considered to be orthotropic with nine independent elastic properties. However, the overall structural performance of the honeycomb core is mainly influenced only by out-of-plane elastic properties. On the other hand, the syntactic foam is considered to beisotropic with two independent elastic constants namely, the modulus of elasticity and Poisson’s ratio. The face skin material may be isotropic with two independent elastic constants or orthotropic with nine elastic constants under three-dimensional loading. The present work is focused on predicting the elastic properties of a honeycomb core, syntactic foam and a glass/epoxy composite using existing theoretical models. Thereafter, the elastic properties of the syntactic foam and glass/epoxy composite are later used to establish the elastic constants for syntactic foam core sandwich composites using modified classical lamination theory (MCLT). The results reveal that the reviewed theoretical models for the honeycomb core, syntactic foam, fiber-reinforced polymeric (FRP) glass/epoxy face skins and sandwich composites are validated by the experimental results.
Czasopismo
Rocznik
Tom
Strony
220--225
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Jawaharlal Nehru New College of Engineering, Shivamogga, Karnataka, India
autor
- Management Studies, Welcomgroup Graduate School of Hotel Administration, Manipal Academy of Higher Education, Manipal, Karnataka, India
Bibliografia
- 1. Gibson J., Ashby F., Cellular Solids: Structure and Properties 1999, Cambridge University Press, 2nd ed., ISBN: 9780521499118.
- 2. Schwingshackl C.W., Aglietti G.S., Cunningham P.R., Determination of honeycomb material properties, Journal of Aerospace Engineering 2006, 19, 177-183, DOI: 10.1061/ (ASCE)0893-1321(2006)19:3(177).
- 3. Amith Kumar S.J., Sabeel Ahmed K., Compression behavior and energy absorption capacity of stiffened syntacticfoam core sandwich composites, Journal of Reinforced Plastics and Composites 2013, 32, 1370-1379, DOI: 10.1177/0731684413492867.
- 4. Shaffer B.W., Stress-strain relations of reinforced plastics parallel and normal to the internal filaments, AIAA Journal 1964, 2, 348-352, DOI: 10.2514/3.228.
- 5. Adams D.F., Doner D.R., Transverse normal loading of a unidirectional composite, Journal of Composite Materials 1967, 1, 152-164, DOI: 10.1177/002199836700100205.
- 6. Adams D.F., Doner D.R., Longitudinal shear loading of a unidirectional composite, Journal of Composite Materials 1967, 1, 4-17, DOI: 10.1177/002199836700100102.
- 7. Hill R., Theory of mechanical properties of fibre-strengthened materials: III, self-consistent model, Journal of Mechanics and Physics of Solids 1965, 13, 189-198, DOI: 10.1016/0022-5096(65)90008-6.
- 8. Whitney J.M., Riley M.B., Elastic properties of fiber reinforced composite materials, AIAA Journal 1966, 4, 1537-1542, DOI: 10.2514/3.3732.
- 9. Paul B., Prediction of elastic constants of multiphase materials, Transaction of Metallurgical Society of AIME 1960, 218, 36-41.
- 10. Hashin Z., Rosen B.W., The elastic moduli of fiberreinforced materials, Journal of Applied Mechanics 1964, 21, 233-242, DOI: 10.1115/1.3629590.
- 11. Halpin J.C., Tsai S.W., Effects of environmental factors on composite materials, Air force technical report AFML-TR- 67-423, Wright Aeronautical labs, Dayton, OH, 1967.
- 12. Rajinder P., New models for effective Young’s modulus of particulate composites, Composites Part B 2005, 36, 513-523, DOI: 10.1016/j.compositesb.2005.02.003.
- 13. Porfiri M., Gupta N., Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites, Composites Part B 2009, 40, 166-173, DOI: j.compositesb.2008.09.002.
- 14. Aureli M., Porfiri M., Gupta N., Effect of polydispersivity and porosity on the elastic properties of hollow particle filled composites, Mechanics of Materials 2010, 42, 726-739, DOI: 10.1016/j.mechmat.2010.05.002.
- 15. Bardella L., Sfreddo A., Ventura C., Porfiri M., Gupta N., A critical evaluation of micromechanical models for syntactic foams, Mechanics of Materials 2012, 50, 53-69, DOI: 10.1016/j.mechmat.2012.02.008.
- 16. Shams A., Porfiri M., A generalized Vlasov-Jones foundation model for micromechanics studies of syntactic foams, Composite Structures 2013, 103, 168-178, DOI: 10.1016/j.compstruct.2013.04.020.
- 17. Gupta N., Ye R., Porfiri M., Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams, Composites Part B 2010, 41, 236-245, DOI: 10.1016/j.compositesb.2009.07.004.
- 18. Gay D., Hoa S.V., Tsai S.V., Composite Materials Design and Applications, CRC Press, Paris 2003.
- 19. Daniel I.M., Ishai O., Engineering Mechanics of Composite Materials, 2nd ed., Oxford University Press, 2007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e389d60-0f6a-4f13-b4f3-ffdee32ba174