Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present the twisted electromagnetic sinc-correlation Schell-model (EM TSSM) beam as an extension of the cylindrical sinc Schell-model beam and analyze the necessary source parameter conditions to generate a physically viable beam. Furthermore, we thoroughly investigate the propagation properties of the EM TSSM beam in atmospheric turbulence using the extended Huygens–Fresnel integral, explicitly focusing on spectral intensity, degree of polarization (DOP), and degree of coherence (DOC). It shows that the twisted phase has a noticeable impact on the intensity profiles of these beams, causing them to exhibit rotation and self-splitting while still maintaining their shape in free space. Moreover, during propagation through a turbulent atmosphere, it exhibits self-combining properties over a long range and recovers the plat-topped distribution. Compared with the sinc Schell-model beam without the twisted phase, the DOP distribution of such a beam can rotate around its distribution center. As these beams propagate through turbulent atmospheres, they can self-heal their DOP distribution within specific ranges affected by atmospheric turbulence. A twist factor causes non-unidirectional rotation of the DOC distribution in free space. The DOC gradually transforms from multi-strip profiles into a Gaussian-like distribution. Furthermore, the beam parameters play a crucial role in shaping the DOC. The results will be useful in optical trapping and optical communication.
Czasopismo
Rocznik
Tom
Strony
15--29
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- College of Artificial Intelligence, Jiang-Xi University of Engineering Xinyu, 33800, Jiangxi, China
autor
- College of Artificial Intelligence, Jiang-Xi University of Engineering Xinyu, 33800, Jiangxi, China
Bibliografia
- [1] GBUR G., Partially coherent beam propagation in atmospheric turbulence, Journal of the Optical Society of America A 31(9), 2014: 2038-2045. https://doi.org/10.1364/JOSAA.31.002038
- [2] CAI Y., CHEN Y., YU J., LIU X., LIU L., Chapter Three - Generation of Partially Coherent Beams, Progress in Optics, Vol. 62, 2017: 157-223. https://doi.org/10.1016/bs.po.2016.11.001
- [3] GBUR G., WOLF E., Spreading of partially coherent beams in random media, Journal of the Optical Society of America A 19(8), 2002: 1592-1598. https://doi.org/10.1364/JOSAA.19.001592
- [4] SHIRAI T., DOGARIU A., WOLF E., Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence, Journal of the Optical Society of America A 20(6), 2003: 1094-1102. https://doi.org/10.1364/JOSAA.20.001094
- [5] KOROTKOVA O., SAHIN S. AND SHCHEPAKINA E., Multi-Gaussian Schell-model beams, Journal of the Optical Society of America A 29(10), 2012: 2159-2164. https://doi.org/10.1364/JOSAA.29.002159
- [6] MEI Z., KOROTKOVA O., Random sources generating ring-shaped beams, Optics Letters 38(2), 2013: 91-93. https://doi.org/10.1364/OL.38.000091
- [7] CHEN Y, GU J, WANG F, CAI Y., Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam, Physical Review A 91(1), 2015: 013823. https://doi.org/10.1103/PhysRevA.91.013823
- [8] LIANG C., WANG F., LIU X., CAI Y., KOROTKOVA O., Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry, Optics Letters 39(4), 2014: 769-772. https://doi.org/10.1364/OL.39.000769
- [9] GORI F., SANTARSIERO M., Devising genuine spatial correlation functions, Optics Letters 32(24), 2007: 3531-3533. https://doi.org/10.1364/OL.32.003531
- [10] GORI F., RAMÍREZ-SÁNCHEZ V., SANTARSIERO M., SHIRAI T., On genuine cross-spectral density matrices, Journal of Optics A: Pure and Applied Optics 11(8), 2009: 085706. https://doi.org/10.1088/1464-4258/11/8/085706
- [11] MAO H., CHEN Y., LIANG C., CHEN L., CAI Y., PONOMARENKO S.A., Self-steering partially coherent vector beams, Optics Express 27(10), 2019: 14353-14368. https://doi.org/10.1364/OE.27.014353
- [12] YU J., CHEN Y., LIU L., LIU X., CAI Y., Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence, Optics Express 23(10), 2015: 13467-13481. https://doi.org/10.1364/OE.23.013467
- [13] CHEN Y., CAI Y., Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam, Optics Letters 39(9), 2014: 2549-2552. https://doi.org/10.1364/OL.39.002549
- [14] MEI Z., Light sources generating self-focusing beams of variable focal length, Optics Letters 39(2), 2014: 347-350. https://doi.org/10.1364/OL.39.000347
- [15] MEI Z.,Two types of Sinc Schell-model beams and their propagation characteristics, Optics Letters 39(14) 2014: 4188-4191. https://doi.org/10.1364/OL.39.004188
- [16] MEI Z., MAO Y., Electromagnetic sinc Schell-model beams and their statistical properties, Optics Express 22(19), 2014: 22534-22546. https://doi.org/10.1364/OE.22.022534
- [17] BAYRAKTAR M., DENIZ BASDEMIR H., Cylindrical-sinc beam, Optik 125(19), 2014: 5869-5871. https://doi.org/10.1016/j.ijleo.2014.07.054
- [18] DING C., KOROTKOVA O., ZHANG Y., PAN L., Sinc Schell-model pulses, Optics Communications 339, 2015: 115-122. https://doi.org/10.1016/j.optcom.2014.11.074
- [19] MEI Z., MAO Y., Multi-sinc Schell-model beams and the interaction with a linear random medium, Laser Physics Letters 12(9), 2015: 095002. https://doi.org/10.1088/1612-2011/12/9/095002
- [20] ZHOU Y., ZHU W., ZHAO D., Twisted sinc-correlation Schell-model beams, Optics Express 30(2), 2022: 1699-1707. https://doi.org/10.1364/OE.450254
- [21] LIU X., ZHOU G., SHEN Y., Effect of oceanic turbulence with anisotropy on the propagation of multi-sinc Schell-model beams, Results in Physics 36, 2022: 105447. https://doi.org/10.1016/j.rinp.2022.105447
- [22] BAYRAKTAR M., Scintillation and bit error rate analysis of cylindrical-sinc Gaussian beam, Physica Scripta 95(11), 2020: 115501. https://doi.org/10.1088/1402-4896/abbbd0
- [23] WOLF E., Unified theory of coherence and polarization of random electromagnetic beams, Physics Letters A 312(5-6), 2003: 263-267. https://doi.org/10.1016/S0375-9601(03)00684-4
- [24] GORI F., SANTARSIERO M., BORGHI R., RAMÍREZ-SÁNCHEZ V., Realizability condition for electromagnetic Schell-model sources, Journal of the Optical Society of America A 25(5), 2008: 1016-1021. https://doi.org/10.1364/JOSAA.25.001016
- [25] MEI Z., KOROTKOVA O., SHCHEPAKINA E., Electromagnetic multi-Gaussian Schell-model beams, Journal of Optics 15(2), 2013: 025705. https://doi.org/10.1088/2040-8978/15/2/025705
- [26] TONG Z., KOROTKOVA O., Electromagnetic nonuniformly correlated beams, Journal of the Optical Society of America A 29(10), 2012: 2154-2158. https://doi.org/10.1364/JOSAA.29.002154
- [27] MEI Z., KOROTKOVA O., Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence, Optics Express 21(22), 2013: 27246-27259. https://doi.org/10.1364/OE.21.027246
- [28] CAI Y., KOROTKOVA O., Twist phase-induced polarization changes in electromagnetic Gaussian Schell-model beams, Applied Physics B 96, 2009: 499-507. https://doi.org/10.1007/s00340-009-3469-0
- [29] ZHU S., CAI Y., Spectral shift of a twisted electromagnetic Gaussian Schell-model beam focused by a thin lens, Applied Physics B 99, 2010: 317-323. https://doi.org/10.1007/s00340-010-3906-0
- [30] LIU L., HUANG Y., CHEN Y., GUO L., CAI Y., Orbital angular moment of an electromagnetic Gaussian Schell-model beam with a twist phase, Optics Express 23(23), 2015: 30283-30296. https://doi.org/10.1364/OE.23.030283
- [31] MEI Z., WANG Y., MAO Y., Electromagnetic sinc Schell-model vortex beams, IEEE Photonics Journal 11(1), 2019: 6100308. https://doi.org/10.1109/JPHOT.2018.2885012
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e38906b-f1ab-4763-b831-bb4272915d5f