PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultra-low Power FinFET SRAM Cell with Improved Stability Suitable for Low Power Applications

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a new 11T SRAM cell using FinFET technology has been proposed, the basic component of the cell is the 6T SRAM cell with 4 NMOS access transistors to improve the stability and also makes it a dual port memory cell. The proposed cell uses a header scheme in which one extra PMOS transistor is used which is biased at different voltages to improve the read and write stability thus, helps in reducing the leakage power and active power. The cell shows improvement in RSNM (Read Static Noise Margin) with LP8T by 2.39x at sub-threshold voltage 2.68x with D6T SRAM cell, 5.5x with TG8T. The WSNM (Write Static Noise Margin) and HM (Hold Margin) of the SRAM cell at 0.9V is 306mV and 384mV. At sub-threshold operation also it shows improvement. The Leakage power reduced by 0.125x with LP8T, 0.022x with D6T SRAM cell, TG8T and SE8T. Also, impact of process variation on cell stability is discussed.
Słowa kluczowe
Rocznik
Strony
603--609
Opis fizyczny
Bibliogr. 29 poz., wykr., rys., tab.
Twórcy
autor
  • Department of Electronics and Communication Engineering, Manipal University, Jaipur, India
Bibliografia
  • [1] S. I. Association et al., “International technology roadmap for semiconductors,” http://www. itrs. net, 2009.
  • [2] W. Lim, H. C. Chin, C. S. Lim, and M. L. P. Tan, “Performance evaluation of 14 nm finfet-based 6t sram cell functionality for dc and transient circuit analysis,” Journal of Nanomaterials, vol. 2014, p. 105, 2014.
  • [3] P. Mishra, A. Muttreja, and N. K. Jha, “Finfet circuit design,” in Nanoelectronic Circuit Design. Springer, 2011, pp. 23–54.
  • [4] Z. Guo, S. Balasubramanian, R. Zlatanovici, T.-J. King, and B. Nikoli´c, “Finfet-based sram design,” in Proceedings of the 2005 international symposium on Low power electronics and design. ACM, 2005, pp. 2–7.
  • [5] K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, “A 3-ghz 70-mb sram in 65-nm cmos technology with integrated column-based dynamic power supply,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 146–151, 2006.
  • [6] M.-H. Chiang, K. Kim, C.-T. Chuang, and C. Tretz, “High-density reduced-stack logic circuit techniques using independent-gate controlled double-gate devices,” IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2370–2377, 2006.
  • [7] R. Kanj, R. Joshi, R. Williams, S. Nassif et al., “Statistical evaluation of split gate opportunities for improved 8t/6t column-decoupled sram cell yield,” in Quality Electronic Design, 2008. ISQED 2008. 9th International Symposium on. IEEE, 2008, pp. 702–707.
  • [8] S. Pal and A. Islam, “Variation tolerant differential 8t sram cell for ultralow power applications,” IEEE transactions on computer-aided design of integrated circuits and systems, vol. 35, no. 4, pp. 549–558, 2016.
  • [9] J.-H. Lee, “Bulk finfets: design at 14 nm node and key characteristics,” in Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. Springer, 2016, pp. 33–64.
  • [10] S. K. Gupta, J. P. Kulkarni, and K. Roy, “Tri-mode independent gate finfet-based sram with pass-gate feedback: technology–circuit co-design for enhanced cell stability,” IEEE Transactions on Electron Devices, vol. 60, no. 11, pp. 3696–3704, 2013.
  • [11] S. M. Salahuddin and M. Chan, “Eight-finfet fully differential sram cell with enhanced read and write voltage margins,” IEEE Transactions on Electron Devices, vol. 62, no. 6, pp. 2014–2021, 2015.
  • [12] S. A. Tawfik and V. Kursun, “Robust finfet memory circuits with p-type data access transistors for higher integration density and reduced leakage power,” Journal of Low Power Electronics, vol. 5, no. 4, pp. 497–508, 2009.
  • [13] S. Birla, “Subthreshold finfet sram at 20nm technology with improved stability and lower leakage power,” Indian Journal of Science and Technology, vol. 10, no. 3, 2017.
  • [14] B. Zeinali, J. K. Madsen, P. Raghavan, and F. Moradi, “Sub-threshold sram design in 14 nm finfet technology with improved access time and leakage power,” in VLSI (ISVLSI), 2015 IEEE Computer Society Annual Symposium on. IEEE, 2015, pp. 74–79.
  • [15] B. H. Calhoun and A. P. Chandrakasan, “A 256-kb 65-nm sub-threshold sram design for ultra-low-voltage operation,” IEEE journal of solid-state circuits, vol. 42, no. 3, pp. 680–688, 2007.
  • [16] K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, “Sram design on 65-nm cmos technology with dynamic sleep transistor for leakage reduction,” IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 895–901, 2005.
  • [17] H. Ananthan, A. Bansal, and K. Roy, “Finfet sram-device and circuit design considerations,” in Quality Electronic Design, 2004. Proceedings. 5th International Symposium on. IEEE, 2004, pp. 511–516.
  • [18] Y. Liu, M. Masahara, K. Ishii, T. Sekigawa, H. Takashima, H. Yamauchi, and E. Suzuki, “A highly threshold voltage-controllable 4t finfet with an 8.5-nm-thick si-fin channel,” IEEE Electron Device Letters, vol. 25, no. 7, pp. 510–512, 2004.
  • [19] B. Ebrahimi, A. Afzali-Kusha, and H. Mahmoodi, “Robust finfet sram design based on dynamic back-gate voltage adjustment,” Microelectronics Reliability, vol. 54, no. 11, pp. 2604–2612, 2014.
  • [20] R. A. Thakker, M. Srivastava, K. H. Tailor, M. S. Baghini, D. K. Sharma, V. R. Rao, and M. B. Patil, “A novel architecture for improving slew rate in finfet-based op-amps and otas,” Microelectronics Journal, vol. 42, no. 5, pp. 758–765, 2011.
  • [21] M. Ansari, H. Afzali-Kusha, B. Ebrahimi, Z. Navabi, A. Afzali-Kusha, and M. Pedram, “A near-threshold 7t sram cell with high write and read margins and low write time for sub-20 nm finfet technologies,” INTEGRATION, the VLSI journal, vol. 50, pp. 91–106, 2015.
  • [22] J. P. Kulkarni, K. Kim, and K. Roy, “A 160 mv robust schmitt trigger based subthreshold sram,” IEEE Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2303–2313, 2007.
  • [23] I. J. Chang, J.-J. Kim, S. P. Park, and K. Roy, “A 32 kb 10t sub-threshold sram array with bit-interleaving and differential read scheme in 90 nm cmos,” IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 650–658, 2009.
  • [24] C.-H. Lo and S.-Y. Huang, “Ppn based 10t sram cell for low-leakage and resilient subthreshold operation,” IEEE Journal of Solid-State Circuits, vol. 46, no. 3, pp. 695–704, 2011.
  • [25] M. Limachia, R. Thakker, and N. Kothari, “A near-threshold 10t differential sram cell with high read and write margins for tri-gated finfet technology,” Integration, the VLSI Journal, 2017.
  • [26] A. Islam, M. Hasan, and T. Arslan, “Variation resilient subthreshold sram cell design technique,” International Journal of Electronics, vol. 99, no. 9, pp. 1223–1237, 2012.
  • [27] B. H. Calhoun and A. P. Chandrakasan, “Static noise margin variation for sub-threshold sram in 65-nm cmos,” IEEE Journal of solid-state circuits, vol. 41, no. 7, pp. 1673–1679, 2006.
  • [28] H. Ananthan and K. Roy, “Technology-circuit co-design in widthquantized quasi-planar double-gate sram,” in Integrated Circuit Design and Technology, 2005. ICICDT 2005. 2005 International Conference on. IEEE, 2005, pp. 155–160.
  • [29] K. Kim, C.-T. Chuang, J. B. Kuang, H. C. Ngo, and K. J. Nowka, “Lowpower high-performance asymmetrical double-gate circuits using backgate-controlled wide-tunable-range diode voltage,” IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2263–2268, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e387292-e5f7-4635-93d3-28f411469548
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.