Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Continuous wavelet transform is a powerful and versatile tool for signal analysis, outperforming short-time Fourier transform in the task of non-stationary, transient signals analysis. However, the method’s performance is heavily influenced by the choice of a mother wavelet function, which is most often made by the experience-supported intuition, followed by the trial-and-error procedure. Numerous attempts to optimize the problem are not universal by any means, as its solution is determined by a particular application, acquired data, and other system requirements. One very specific example is wavelet-based statistical analysis, performed for the needs of the stochastic resynthesis of sound textures, which requires minimal decomposition and precise time localization of the individual acoustic events, components of a complex texture. This work presents the automated mother wavelet function optimization system, which performs the optimal selection based on the reference audio signal. The algorithm iterates through a wide set of commonly used functions and compares the wavelet packet decomposition trees in search of the single node, containing the most information possible, with the use of the entropy-based criterion. After performing the procedure, reference signal is resynthesized with coefficients of the selected wavelet function and then calculation of normalized root mean square error serves as a verification of the results. Conclusions contain both the advantages and the limitations of the proposed solution together with the possible improvements and the directions of future research.
Czasopismo
Rocznik
Tom
Strony
art. no. 2023218
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
- AGH University of Krakow, al. Mickiewicza 30, Cracow, Poland
Bibliografia
- 1. J. H. McDermott, E.P. Simoncelli; Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis; Neuron, 2011, 71(5), 926-940; DOI: 10.1016/j.neuron.2011.06.032
- 2. S.A. Nicolas, K. Popat; Analysis and synthesis of sound textures; In: Computational auditory scene analysis, CRC Press, 1998, 293-308
- 3. J.J. Alvarsson, S. Wiens, M.E. Nilsson; Stress recovery during exposure to nature sound and environmental noise; Int. J. Environ. Res. Public Health, 2010, 7(3), 1036-1046; DOI: 10.3390/ijerph7031036
- 4. M. Ruiz et al.; Wind turbine fault detection and classification by means of image texture analysis; Mechanical Systems and Signal Processing, 2018, 107, 149-167; DOI: 10.1016/j.ymssp.2017.12.035
- 5. G. Sharma, K. Umapathy, S. Krishnan; Audio texture analysis of COVID-19 cough, breath, and speech sounds; Biomed. Signal Process. Control., 2022, 76, 103703; DOI: 10.1016/j.bspc.2022.103703
- 6. C. Roads; Microsound; The MIT Press, 2004
- 7. I. De Moortel, S.A. Munday, A.W. Hood; Wavelet analysis: the effect of varying basic wavelet parameters; Solar Physics, 2004, 222(2), 203-228
- 8. P.W. Tse, D. Wang; The automatic selection of an optimal wavelet filter and its enhancement by the new sparsogram for bearing fault detection; Mechanical Systems and Signal Processing, 2013, 40(2), 520-544; DOI: 10.1016/j.ymssp.2013.05.018
- 9. Y. Jang et al.; The optimal selection of mother wavelet function and decomposition level for denoising of DCG signal; Sensors, 2021, 21(5), 1851; DOI: 10.3390/s21051851
- 10. R.R. Coifman, M.V. Wickerhauser; Entropy-Based Algorithms for Best Basis Selection; IEEE Transactions on Information Theory, 1992, 38(2), 713-718; DOI: 10.1109/18.119732
- 11. M.A. Cody; The wavelet packet transform: Extending the wavelet transform; Dr. Dobb's Journal, 1994, 19, 44-46
- 12. J. Gilles; Empirical wavelet transform; IEEE Transactions on Signal Processing, 2013, 61(16), 3999-4010; DOI: 10.1109/TSP.2013.2265222
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e343eef-26d5-43e0-bd7f-2e7c89fecf5f