PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Principal Slip Zone determination in the Wenchuan earthquake Fault Scientifc Drilling project hole 1: considering the Bayesian discriminant function

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate determination of the Principal Slip Zone (PSZ) of earthquake fault zones is a key task of earthquake Fault Scientifc Drilling for future earthquake control. The fault zone structure of Wenchuan earthquake is complex, and there are many strong earthquakes recorded on the fault zone, which make determining the PSZ in the Wenchuan earthquake Fault Scientifc Drilling project-hole 1 (WFSD-1) difcult. At present, core analysis of whole coring is the decisive method for determining PSZ depth, and the fresh fault gouge at 589.2 m is the PSZ in WFSD-1. Abundant and comprehensive logging data can only be used as evidence to judge the PSZ. Based on the discrimination function and hyperplane equation in Bayes ian discriminant classifcation, we derive a new algorithm for computing the PSZ possibility using a Bayesian Discrimina tion function (PSZP-BDF) based on the simplifed model, and set up a mode to determine the PSZ directly using machine learning of well logging. For the verifcation of WFSD-1, the fault gouges are successfully identifed and the PSZ depth is accurately located. The algorithm objectively learns the sample data, which is naturally adaptive to the region. The calculation procedure is simple and does not require expensive coring data or heavy core tests in the well. The calculation speed is fast, using multiple physical data types. The PSZP-BDF algorithm is suitable for processing and interpreting earthquake fault scientifc drilling data.
Czasopismo
Rocznik
Strony
1595--1607
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, China
  • College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China
  • Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, China
  • College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China
autor
  • Electronics and Information School, Yangtze University, Jingzhou, China
autor
  • Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, China
autor
  • College of Geophysics and Petroleum Resources, Yangtze University, Wuhan, China
Bibliografia
  • 1. Brodsky EE, Kuo-Fong M, Jim M et al (2009) Rapid response fault drilling past, present, and future. Sci Drill 8(8):66–74
  • 2. Gratier JP, Favreau P, Renard F (2003) Modeling fluid transfer along California faults when integrating pressure solution crack sealing and compaction processes. J Geophys Res 108(B2):1–25
  • 3. Han R, Shimamoto T, Hirose T et al (2007) Ultralow friction of carbonate faults caused by thermal decomposition. Science 316(5826):878–881
  • 4. Hirono T, Fujimoto K, Yokoyama T et al (2008) Clay mineral reactions caused by frictional heating during an earthquake: an example from the Taiwan Chelungpu fault. Geophys Res Lett 35(16):L16303
  • 5. Hirose T, Shimamoto T (2005) Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. J Geophys Res (Solid Earth) 110:B05202
  • 6. Kano Y, Mori J, Fujio R et al (2006) Heat signature on the chelungpu fault associated with the 1999 chi-chi, taiwan earthquake. Geophys Res Lett 33(14):L14306
  • 7. Konaté AA, Pan HP, Ma HL et al (2017) Use of spectral gamma ray as a lithology guide for fault rocks: a case study from the Wenchuan Earthquake Fault Scientific Drilling project Borehole 4 (WFSD-4). Appl Radiat Isotopes 128:75–85
  • 8. Lacroix B, Tesei T, Oliot E et al (2015) Early weakening processes inside thrust fault. Tectonics 34(7–8):1396–1411
  • 9. Li HB, Wang H, Xu ZQ et al (2013a) Characteristics of the fault-related rocks, fault zone structures and the principal slip zone of the wenchuan earthquake in wfsd drilling cores. Tectonophysics 584:23–42
  • 10. Li HB, Xu ZQ, Wang H et al (2013b) The Principle Slip Zone of the 2008 Wenchuan earthquake: a thrust fault oblique cutting the Yingxiu-Beichuan fault zone. Geol China 40(1):121–139
  • 11. Li HB, Xu ZQ, Wang H et al (2018) Fault behavior, physical properties and seismic activity of the Wenchuan earthquake fault zone: evidences from the Wenchuan earthquake Fault Scientific Drilling project (WFSD). Chin J Geophys (in Chin) 61(5):1680–1697
  • 12. Lin A, Maruyama T, Aaron S et al (2005) Propagation of seismic slip from brittle to ductile crust: evidence from pseudotachylyte of the Woodroffe thrust, central Australia. Tectonophysics 402(4):1–35
  • 13. Liu XY, Chen XH, Li JY et al (2016) Reservoir physical property prediction based on kernel-Bayes discriminant method. Acta Petrol Sin 37:878–886
  • 14. Ma KF, Tanaka H, Song SR et al (2006) Slip zone and energetics of a large earthquake from the taiwan chelungpu-fault drilling project. Nature 444(7118):473–476
  • 15. Mckenzie D, Brune JN (1972) Melting on fault planes during large earthquakes. Geophys J Roy Astron Soc 29(1):65–78
  • 16. Pei J, Li H, Wang H et al (2014) Magnetic properties of the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1), Sichuan Province, China. Earth Planets Space 66:23
  • 17. Peng ZG, Wu CQ, Aiken C (2011) Delayed triggering of microearthquakes by multiple surface waves circling the Earth. Geophys Res Lett 38(4):L04306
  • 18. Rabinowitz HS, Savage HM, Polissar PJ et al (2020) Earthquake slip surfaces identified by biomarker thermal maturity within the 2011 Tohoku-Oki earthquake fault zone. Nat Commun 11(1):533
  • 19. Ramoni M, Sebastiani P (2001) Robust Bayes classifiers. Artif Intell 125:207–224
  • 20. Sibson RH (2003) Thickness of the seismic slip zone. Bull Seismol Soc Am 93(3):1169–1178
  • 21. Spray JG (1992) A physical basis for the frictional melting of some rock-forming minerals. Tectonophysics 204(3–4):205–221
  • 22. Tanaka H, Fujimoto K, Ohtani T et al (2001) Structural and chemical characterization of shear zones in the freshly activated Nojima fault, Awaji island, southwest Japan. J Geophys Res 106(B5):8789–8810
  • 23. Tsakalos E, Lin A, Kazantzaki M et al (2020) Absolute Dating of Past Seismic Events Using the OSL Technique on Fault Gouge Material—A Case Study of the Nojima Fault Zone, SW Japan. J Geophys Res: Solid Earth 125(8):1
  • 24. Wang CY (2007) Liquefaction beyond the near field. Seismol Res Lett 78(5):512–517
  • 25. Wang H, Li HB, Zhang L et al (2018) Pseudotachylytes in the Longmen Shan fault zone and fault weakening mechanisms. Chin J Geophys 61(5):1698–1714 (in Chinese)
  • 26. Weaver KC, Doan ML, Cox SC et al (2019) Tidal behavior and water-level changes in gravel aquifers in response to multiple earthquakes: a case study from New Zealand. Water Resour Res 55(2):1263–1278
  • 27. Woodcock NH, Mort K (2008) Classification of fault breccias and related fault rocks. Geol Mag 145(3):435–440
  • 28. Xu ZQ, Wu ZL, Li HB et al (2018) The most rapid respond to a large earthquake—the Wenchuan earthquake Fault Scientific Drilling Project. Chin J Geophys 61(5):1666–1679 (in Chinese)
  • 29. Xue L, Li HB, Brodsky EE et al (2013) Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science 340(6140):1555–1559
  • 30. Zheng YC (2018) Transient pressure surge in a fluid-filled fracture. Bull Seismol Soc Am 108:1481–1488
  • 31. Zheng Y, Li H, Gong Z (2016) Geothermal study at the Wenchuan earthquake Fault Scientific Drilling project-hole 1 (WFSD-1): borehole temperature, thermal conductivity, and well log data. J Asian Earth Sci 117:23–32
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e315bde-5455-49ba-b887-6de4841167ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.